Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Biorthogonal exponential sequences with weight function $ \exp(ax^2+ibx)$ on the real line and an orthogonal sequence of trigonometric functions


Author: Mohammad Masjed-Jamei
Journal: Proc. Amer. Math. Soc. 136 (2008), 409-417
MSC (2000): Primary 05E35, 42C05, 33C47
DOI: https://doi.org/10.1090/S0002-9939-07-09139-3
Published electronically: November 1, 2007
MathSciNet review: 2358478
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Some orthogonal functions can be mapped onto other orthogonal functions by the Fourier transform. In this paper, by using the Fourier transform of Stieltjes-Wigert polynomials, we derive a sequence of exponential functions that are biorthogonal with respect to a complex weight function like $ \exp(q_1(ix+p_1)^2+q_2(ix+p_2)^2)$ on $ (-\infty,\infty)$. Then we restrict these introduced biorthogonal functions to a special case to obtain a sequence of trigonometric functions orthogonal with respect to the real weight function $ \exp(-qx^2)$ on $ (-\infty,\infty)$.


References [Enhancements On Off] (What's this?)

  • 1. T. S. Chihara, An introduction to orthogonal polynomials, Gordon and Breach, N.Y. 1978. MR 0481884 (58:1979)
  • 2. J. S. Christiansen, The moment problem associated with the Stieltjes-Wigert polynomials, J. Math. Anal. Appl., 277 (2003), no. 1, 218-245. MR 1954473 (2004b:44007)
  • 3. J. S. Christiansen and E. Koelink, Self-adjoint difference operators and classical solutions to the Stieltjes-Wigert moment problem, J. Approx. Theory, 140 (2006), no. 1, 1-26. MR 2226673
  • 4. J. S. Christiansen and M. E. H Ismail, A moment problem and a family of integral evaluations, Trans. Amer. Math. Soc,. 358 (2006), no. 9, 4071-4097. MR 2219011 (2007a:33015)
  • 5. A. Erdelyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Tables of Integral Transforms, Vol. 2, McGraw-Hill, 1954.
  • 6. W. Groenevelt, The Wilson function transform, Int. Math. Res. Not., (2003), no. 52, 2779-2817. MR 2058035 (2006a:33009)
  • 7. M. E. H Ismail and D. R. Masson, $ q$-Hermite polynomials, biorthogonal rational functions, and $ q$-beta integrals, Trans. Amer. Math. Soc., 346 (1994), no. 1, 63-116. MR 1264148 (96a:33022)
  • 8. R. Koekoek and R. F. Swarttouw, The Askey-scheme of hypergeometric orthogonal polynomials and its $ q$-analogue, Report no. 98-17, Technical Universiteit Delft, Faculty of Technical Mathematics and Informatics, Delft, (1998), Web site: http://aw.twi.tudelft.nl/ koekoek/askey/
  • 9. H. T. Koelink, On Jacobi and continuous Hahn polynomials, Proc. Amer. Math. Soc., 124 (1996), 997-898. MR 1307541 (96f:33018)
  • 10. W. Koepf and M. Masjed-Jamei, Two classes of special functions using Fourier transforms of some finite classes of classical orthogonal polynomials, Proc. Amer. Math. Soc., 135 (2007), no. 11, 3599-3606.
  • 11. T. H. Koornwinder, Special orthogonal polynomial systems mapped onto each other by the Fourier-Jacobi transform, Polynômes Orthogonaux et Applications (C. Brezinski, A. Draux, A. P. Magnus, P. Maroni and A. Ronveaux, Eds.), Lecture Notes Math., 1171, Springer, (1985), 174-183. MR 838982 (87g:33007)
  • 12. T. H. Koornwinder, Meixner-Pollaczek polynomials and the Heisenberg algebra, J. Math. Phys., 30 (1989), 767-769. MR 987105 (90e:33037)
  • 13. M. Masjed-Jamei, Three finite classes of hypergeometric orthogonal polynomials and their application in functions approximation, J. Integral Transforms and Special Functions, 13 (2002), no. 2, 169-190. MR 1915513 (2003i:33011)
  • 14. M. Masjed-Jamei, Classical orthogonal polynomials with weight function $ ((ax+b)^2+(cx+d)^2)^{-p}\exp(q\operatorname{arctan}(ax+b)/(cx+d))$; $ x\in(-\infty,\infty)$ and a generalization of $ T$ and $ F$ distributions, J. Integral Transforms and Special Functions, 15 (2004), no. 2, 137-153. MR 2053407 (2005b:33011)
  • 15. T.J. Stieltjes, Recherches sur les fractions continues, Annales de la faculte des sciences de Toulous, 8 (1894), J1-122; 9 (1895), A1-47; Qeuvres, vol.2, 398-566.
  • 16. S. Wigert, Sur les polynomes orthogonaux et l'approximation des functions continues, Arkiv for matematik, astronomi och fysik, 17 (1923), no. 18, 15 pp.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 05E35, 42C05, 33C47

Retrieve articles in all journals with MSC (2000): 05E35, 42C05, 33C47


Additional Information

Mohammad Masjed-Jamei
Affiliation: Department of Applied Mathematics, K. N. Toosi University of Technology, P.O. Box 15875-4416, Tehran, Iran
Email: mmjamei@aut.ac.ir, mmjamei@yahoo.com

DOI: https://doi.org/10.1090/S0002-9939-07-09139-3
Keywords: Stieltjes--Wigert polynomials, Fourier transform, Parseval identity, normal and log-normal distributions.
Received by editor(s): September 14, 2006
Published electronically: November 1, 2007
Communicated by: Carmen C. Chicone
Article copyright: © Copyright 2007 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society