Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On fixed point theorems of Leray-Schauder type


Authors: Marcin Borkowski and Dariusz Bugajewski
Journal: Proc. Amer. Math. Soc. 136 (2008), 973-980
MSC (2000): Primary 47H10, 54H25, 54E35
DOI: https://doi.org/10.1090/S0002-9939-07-09023-5
Published electronically: November 30, 2007
MathSciNet review: 2361871
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we prove a few fixed points theorems of Leray-Schauder type in hyperconvex metric spaces.


References [Enhancements On Off] (What's this?)

  • 1. N. Aronszajn, P. Panitchpakdi, Extension of uniformly continuous transformations and hyperconvex metric spaces, Pacific J. Math, 6, 1956, 405-439. MR 0084762 (18:917c)
  • 2. M. Borkowski, D. Bugajewski, On hyperconvex spaces revisited, Bull. Austr. Math. Soc., 68, 2003, 191-203. MR 2016296 (2004i:54035)
  • 3. J.-B. Baillon, Nonexpansive mapping and hyperconvex spaces, Contemp. Math., 72, 1988, 11-19. MR 956475 (89k:54068)
  • 4. D. Bugajewski, On fixed point theorems for absolute retracts, Math. Slovaca, 51, 2001, no. 4, 459-467. MR 1864113
  • 5. D. Bugajewski, R. Espínola, Measure of nonhyperconvexity and fixed-point theorems, Abstract and Applied Analysis, 2003, no. 2, 111-119. MR 1960142 (2004a:54047)
  • 6. D. Bugajewski, E. Grzelaczyk, A fixed point theorem in hyperconvex spaces, Arch. Math., 75, 2000, 395-400. MR 1785449 (2001e:54062)
  • 7. F. Cianciaruso, E. De Pascale, The Hausdorff measure of non-hyperconvexity, Atti Sem. Mat. Fis. Univ. Modena, 47, 1, 1999, 261-267. MR 1694422 (2000f:54026)
  • 8. J. Dugundji, A. Granas, Fixed point theory, I, PWN, Warsaw, 1982. MR 660439 (83j:54038)
  • 9. R. Espínola, Darbo-Sadovski's theorem in hyperconvex metric spaces, Rend. Circ. Mat. Palermo (2) Suppl., 40, 1996, 129-137. MR 1407086 (97f:54050)
  • 10. R. Espínola, M. A. Khamsi, Introduction to hyperconvex spaces, W. A. Kirk, B. Sims (eds.) Handbook on metric fixed point theory, Kluwer Academic Publishers. MR 1904284 (2003g:47099)
  • 11. M. Frigon, A. Granas, Résultats du type de Leray-Schauder pour des contractions multivoques, Topol. Methods Nonlinear Anal., 4, 1994, 197-208. MR 1321812 (95m:47110)
  • 12. D. Göhde, Zum Prinzip der kontraktiven Abbildung, Math. Nachr., 30, 1965, 251-258. MR 0190718 (32:8129)
  • 13. A. Granas, Continuation method for contractive maps, Topol. Methods Nonlinear Anal., 3, 1994, 375-379. MR 1281993 (95d:54034)
  • 14. J. R. Isbell, Six theorems about injective metric spaces, Comment. Math. Helv., 39, 1964, 65-76. MR 0182949 (32:431)
  • 15. W. A. Kirk, S. S. Shin, Fixed point theorems in hyperconvex spaces, Houston J. Math., 23, 1997, 175-188. MR 1688815 (2000d:47080)
  • 16. D. O'Regan, Existence theory for nonlinear ordinary differential equations, Kluwer Academic Publishers, Mathematics and Its Applications 398, Dordrecht, Boston, London, 1997. MR 1449397 (98h:34042)
  • 17. D. O'Regan, Fixed point theorems for nonlinear operators, J. Math. Anal. Appl., 202, 1996, 413-432. MR 1406238 (97i:47119)
  • 18. R. C. Sine, On nonlinear contraction semigroups in sup norm spaces, Nonlinear Anal., 3, 1979, 885-890. MR 548959 (80i:47082)
  • 19. P. Soardi, Existence of fixed points for nonexpansive mappings in certain Banach lattices, Proc. Amer. Math. Soc., 73, 1979, 25-29. MR 512051 (80c:47051)
  • 20. M. Väth, Fixed point theorems and fixed point index for countably condensing maps, Topol. Methods Nonlinear Anal., 13, 2, 1999, 341-363. MR 1742228 (2001c:47068)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 47H10, 54H25, 54E35

Retrieve articles in all journals with MSC (2000): 47H10, 54H25, 54E35


Additional Information

Marcin Borkowski
Affiliation: Optimization and Control Theory Department, Faculty of Mathematics and Computer Science, Adam Mickiewicz University, ul. Umultowska 87, 61-614 Poznań, Poland
Email: mbork@amu.edu.pl

Dariusz Bugajewski
Affiliation: Department of Mathematics, Morgan State University, 1700 E. Cold Spring Lane, Baltimore, Maryland 21251
Email: dbugajew@jewel.morgan.edu

DOI: https://doi.org/10.1090/S0002-9939-07-09023-5
Received by editor(s): October 17, 2006
Received by editor(s) in revised form: November 29, 2006
Published electronically: November 30, 2007
Communicated by: Joseph A. Ball
Article copyright: © Copyright 2007 American Mathematical Society

American Mathematical Society