Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Banach function algebras with dense invertible group


Authors: H. G. Dales and J. F. Feinstein
Journal: Proc. Amer. Math. Soc. 136 (2008), 1295-1304
MSC (2000): Primary 46J10
DOI: https://doi.org/10.1090/S0002-9939-07-09044-2
Published electronically: December 21, 2007
MathSciNet review: 2367103
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In 2003 Dawson and Feinstein asked whether or not a Banach function algebra with dense invertible group can have a proper Shilov boundary. We give an example of a uniform algebra showing that this can happen, and investigate the properties of such algebras. We make some remarks on the topological stable rank of commutative, unital Banach algebras. In particular, we prove that $ \mathrm{tsr}(A) \geq \mathrm{tsr}(C(\Phi_A))$ whenever $ A$ is approximately regular.


References [Enhancements On Off] (What's this?)

  • 1. H. Alexander and J. Wermer, Several complex variables and Banach algebras, Graduate Texts in Mathematics, 35, Springer-Verlag, New York, 1998. MR 1482798 (98g:32002)
  • 2. C. Badea, The stable rank of topological algebras and a problem of R. G. Swan, J. Functional Analysis, 160 (1998), 42-78. MR 1658716 (2000a:46069)
  • 3. B. J. Cole, One point parts and the peak point conjecture, Ph.D. Thesis, Yale University, 1968.
  • 4. G. Corach and A. R. Larotonda, Stable rank in Banach algebras, Journal of Pure and Applied Algebra, 32 (1984), 289-300. MR 745359 (86g:46070)
  • 5. G. Corach and F. D. Suárez, Stable rank in holomorphic function algebras, Illinois J. Math., 29 (1985), 627-639. MR 806470 (87b:46056)
  • 6. G. Corach and F. D. Suárez, Extension problems and stable rank in commutative Banach algebras, Topology and its applications, 21 (1985), 1-8. MR 808718 (87a:46086)
  • 7. G. Corach and F. D. Suárez, Thin spectra and stable range conditions, J. Functional Analysis, 81 (1988) 432-442. MR 971887 (89k:46061)
  • 8. H. G. Dales, Banach algebras and automatic continuity, London Mathematical Society Monographs, New Series, Volume 24, The Clarendon Press, Oxford, 2000. MR 1816726 (2002e:46001)
  • 9. T. W. Dawson and J. F. Feinstein, On the denseness of the invertible group in Banach algebras, Proc. American Math. Soc., 131 (2003), 2831-2839. MR 1974340 (2004c:46093)
  • 10. C. M. Falcón Rodríguez, The denseness of the group of invertible elements of a uniform algebra, Cienc. Mat. (Havana), 9 (1988), 11-17. MR 1007646 (91c:46072)
  • 11. J. F. Feinstein, Trivial Jensen measures without regularity, Studia Mathematica, 148 (2001), 67-74. MR 1881440 (2002k:46127)
  • 12. T. W. Gamelin, Uniform algebras, Prentice-Hall, Englewood Cliffs, New Jersey, 1969. MR 0410387 (53:14137)
  • 13. R. C. Gunning and H.  Rossi, Analytic functions of several complex variables, Prentice-Hall, Englewood Cliffs, New Jersey, 1965. MR 0180696 (31:4927)
  • 14. W. Hurewicz and H. Wallman, Dimension theory, Princeton University Press, Princeton, New Jersey, 1948. MR 0006493 (3:312b)
  • 15. M. A. Rieffel, Dimension and stable rank in the $ K$-theory of C$ ^*$-algebras, Proc. London Math. Soc., 46 (1983), 301-333. MR 693043 (84g:46085)
  • 16. G. Stolzenberg, A hull with no analytic structure, J. Mathematics and Mechanics, 12 (1963), 103-111. MR 0143061 (26:627)
  • 17. E. L. Stout, The theory of uniform algebras, Bogden and Quigley, New York, 1971. MR 0423083 (54:11066)
  • 18. J. L. Taylor, Topological invariants of the maximal ideal space of a Banach algebra, Advances in Mathematics, 19 (1976), 149-206. MR 0410384 (53:14134)
  • 19. J. Wermer, On an example of Stolzenberg, Symposium on Several Complex Variables (Park City, Utah, 1970), Lecture Notes in Math., Vol. 184, Springer, Berlin, 1971, pp. 79-84. MR 0298428 (45:7480)
  • 20. D. R. Wilken, Approximate normality and function algebras on the interval and circle, in Function algebras, (ed. F. T. Birtel), Scott, Foresman, Glenview, Illinois, 1965, pp. 98-111. MR 0196525 (33:4712)
  • 21. L. N. Vaserstein, Stable rank of rings and dimensionality of topological spaces, Functional Analysis and Applications, 5 (1972), 102-110.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 46J10

Retrieve articles in all journals with MSC (2000): 46J10


Additional Information

H. G. Dales
Affiliation: Department of Pure Mathematics, University of Leeds, Leeds LS2 9JT, United Kingdom
Email: garth@maths.leeds.ac.uk

J. F. Feinstein
Affiliation: School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom
Email: Joel.Feinstein@nottingham.ac.uk

DOI: https://doi.org/10.1090/S0002-9939-07-09044-2
Received by editor(s): December 1, 2005
Received by editor(s) in revised form: October 23, 2006, and December 20, 2006
Published electronically: December 21, 2007
Communicated by: N. Tomczak-Jaegermann
Article copyright: © Copyright 2007 American Mathematical Society

American Mathematical Society