Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Krasnoselskii type fixed point theorems and applications


Authors: Yicheng Liu and Zhixiang Li
Journal: Proc. Amer. Math. Soc. 136 (2008), 1213-1220
MSC (2000): Primary 47H10, 34K13
DOI: https://doi.org/10.1090/S0002-9939-07-09190-3
Published electronically: December 5, 2007
MathSciNet review: 2367095
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we establish two fixed point theorems of Krasnoselskii type for the sum of $ A+B$, where $ A$ is a compact operator and $ I-B$ may not be injective. Our results extend previous ones. As an application, we apply such results to obtain some existence results of periodic solutions for delay integral equations and then give three instructive examples.


References [Enhancements On Off] (What's this?)

  • 1. C. Avramescu, A fixed point theorem for multivalued mapping, Electronic J. Qualitative Theory of Differential Equations, 17(2004),1-10. MR 2111742 (2005h:47094)
  • 2. C. Avramescu and C. Vladimirescu, Fixed point theorems of Krasnoselskii type in a space of continuous functions. Fixed Point Theory 5(2004),1-11. MR 2117331 (2005i:47086)
  • 3. C. S. Barroso, Krasnoselskii's fixed point theorem for weakly continuous maps, Nonlinear Anal., 55(2003),25-31. MR 2001629 (2004f:47084)
  • 4. C. S. Barroso and E.V. Teixeira, A topological and geometric approach to fixed points results for sum of operators and applications, Nonlinear Anal., 60(2005),625-650. MR 2109150 (2005i:47087)
  • 5. T. A. Burton, Integral equations, implicit functions and fixed points, Proc. Amer. Math. Soc., 124(1996), 2383-2390. MR 1346965 (96j:45001)
  • 6. T. A. Burton, Krasnoselskii's inversion principle and fixed points, Nonlinear Analysis 30(1997), 3975-3986. MR 1603541 (99a:47093)
  • 7. T. A. Burton and Colleen Kirk, A fixed point theorem of Krasnoselskii-Schaefer type, Mathematische Nachrichten, 189(1998),23-31. MR 1492921 (99a:47081)
  • 8. B. C. Dhage, A fixed point theorem in Banach algebras involving three operators with applications, Kyungpook Math. J. 44(2004), 145-155. MR 2040753 (2005b:47124)
  • 9. D. Henry, Geometric theory of semilinear parabolic equations, Springer-Verlag, Berlin-New York, 1981. MR 610244 (83j:35084)
  • 10. V. I. Istratescu, Fixed point theory. An introduction, Dordrecht: D. Reidel Publishing Company, 1981. MR 620639 (83c:54065)
  • 11. Y. C. Liu and Z. X. Li, Schaefer type theorem and periodic solutions of evolution equations, J. Math. Anal. Appl., 316(1)(2006), 237-255. MR 2201760 (2006m:47091)
  • 12. Y. C. Liu and Z. X. Li, New fixed point theorems and applications, Acta Mathematica Sinica, Chinese Series. 49(5)(2006), 1067-1074. (In Chinese) MR 2285410
  • 13. H. Schaefer, Über die Methode der a priori-Schranken, Math. Ann. 129(1955),415-416. MR 0071723 (17:175e)
  • 14. D. R. Smart, Fixed point theorems, Cambridge Univ. Press, Cambridge, 1980. MR 0467717 (57:7570)
  • 15. A. C. Thompson, On certain contraction mappings in a partially ordered vector space, Proc. Amer. Math. Soc., 14(1963),438-443. MR 0149237 (26:6727)
  • 16. J. H. Wu, Theory and application of partial functional differential equations, Springer-Verlag, Berlin-New York, 1996. MR 1415838 (98a:35135)
  • 17. E. Zeidler, Nonlinear functional analysis and its applications, I: Fixed Point Theorems, Springer-Verlag, New York, 1986. MR 816732 (87f:47083)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 47H10, 34K13

Retrieve articles in all journals with MSC (2000): 47H10, 34K13


Additional Information

Yicheng Liu
Affiliation: Department of Mathematics and System Science, College of Science, National University of Defense Technology, Changsha, 410073, People’s Republic of China.
Email: liuyc2001@hotmail.com

Zhixiang Li
Affiliation: Department of Mathematics and System Science, College of Science, National University of Defense Technology, Changsha, 410073, People’s Republic of China.
Email: zhxli02@yahoo.com.cn

DOI: https://doi.org/10.1090/S0002-9939-07-09190-3
Keywords: Fixed point theorem, separate contraction mapping, periodic solution, multi-valued mapping, delay integral equation.
Received by editor(s): July 28, 2004
Received by editor(s) in revised form: December 20, 2005
Published electronically: December 5, 2007
Communicated by: David S. Tartakoff
Article copyright: © Copyright 2007 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society