Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Spectral dominance and commuting chains


Authors: Bich T. Hoai, Charles R. Johnson and Ilya M. Spitkovsky
Journal: Proc. Amer. Math. Soc. 136 (2008), 2019-2029
MSC (2000): Primary 47A63, 15A57, 15A27
DOI: https://doi.org/10.1090/S0002-9939-08-09104-1
Published electronically: February 14, 2008
MathSciNet review: 2383508
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A positive semidefinite (PSD) operator $ A$ ``spectrally dominates'' a PSD operator $ B$ if $ A^t-B^t$ is PSD for all $ t>0$. We (i) give a new characterization of spectral dominance in finite dimensions in terms of a monotonic chain of intermediate, pairwise commuting operators and (ii) determine for which pairs $ A,B$ spectral dominance persists under the taking of arbitrary compressions. Earlier results about spectral dominance are proven (in finite dimensions) in new ways, and several corollary observations are made.


References [Enhancements On Off] (What's this?)

  • 1. R. Bhatia, Matrix analysis, Graduate Texts in Mathematics, vol. 169, Springer-Verlag, New York, 1997. MR 1477662 (98i:15003)
  • 2. C. Davis, Separation of two linear subspaces, Acta Sci. Math. (Szeged) 19 (1958), 172-187. MR 0098980 (20:5425)
  • 3. W. F. Donoghue, Jr., Monotone matrix functions and analytic continuation, Springer-Verlag, New York, 1974, Die Grundlehren der mathematischen Wissenschaften, Band 207. MR 0486556 (58:6279)
  • 4. M. Fujii and I. Kasahara, A remark on the spectral order of operators, Proc. Japan Acad. 47 (1971), suppl. II, 986-988. MR 0312311 (47:873)
  • 5. T. Furuta, $ A\geq B\geq 0$ assures $ (B\sp rA\sp pB\sp r)\sp {1/q}\geq B\sp {(p+2r)/q}$ for $ r\geq 0$, $ p\geq 0$, $ q\geq 1$ with $ (1+2r)q\geq p+2r$, Proc. Amer. Math. Soc. 101 (1987), no. 1, 85-88. MR 897075 (89b:47028)
  • 6. -, Spectral order $ A\succ B$ if and only if $ A\sp {2p-r}\geq (A\sp {-r/2}B\sp p A\sp {-r/2})\sp {(2p-r)/(p-r)}$ for all $ p>r\geq 0$ and its application, Math. Inequal. Appl. 4 (2001), no. 4, 619-624. MR 1859666 (2002g:47029)
  • 7. R. Giles and H. Kummer, A matrix representation of a pair of projections in Hilbert space, Canad. Math. Bull. 14 (1971), no. 1, 35-44. MR 0291822 (45:912)
  • 8. K. E. Gustafson and D. K. M. Rao, Numerical range. The field of values of linear operators and matrices, Springer, New York, 1997. MR 1417493 (98b:47008)
  • 9. P. R. Halmos, Two subspaces, Trans. Amer. Math. Soc. 144 (1969), 381-389. MR 0251519 (40:4746)
  • 10. R. A. Horn and C. R. Johnson, Topics in matrix analysis, Cambridge University Press, Cambridge, 1991. MR 1091716 (92e:15003)
  • 11. M. P. Olson, The selfadjoint operators of a von Neumann algebra form a conditionally complete lattice, Proc. Amer. Math. Soc. 28 (1971), 537-544. MR 0276788 (43:2528)
  • 12. V. E. S. Szabó, A class of matrix monotone functions, Linear Algebra Appl. 420 (2007), 79-85. MR 2277630

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 47A63, 15A57, 15A27

Retrieve articles in all journals with MSC (2000): 47A63, 15A57, 15A27


Additional Information

Bich T. Hoai
Affiliation: Department of Mathematics, College of William & Mary, Williamsburg, Virginia 23185
Address at time of publication: Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109-1043
Email: bhoai@umich.edu

Charles R. Johnson
Affiliation: Department of Mathematics, College of William & Mary, Williamsburg, Virginia 23185
Email: crjohnso@math.wm.edu

Ilya M. Spitkovsky
Affiliation: Department of Mathematics, College of William & Mary, Williamsburg, Virginia 23185
Email: ilya@math.wm.edu

DOI: https://doi.org/10.1090/S0002-9939-08-09104-1
Keywords: Semidefinite operators/matrices, spectral order, power dominance
Received by editor(s): November 30, 2006
Received by editor(s) in revised form: January 3, 2007
Published electronically: February 14, 2008
Additional Notes: The work on this paper in the summer of 2006 was supported in part by the National Science Foundation Grant No. DMS-0353510
The third author (IMS) is also partially supported by the National Science Foundation Grant No. DMS-0456625.
Communicated by: Joseph A. Ball
Article copyright: © Copyright 2008 American Mathematical Society

American Mathematical Society