Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Normalization of monomial ideals and Hilbert functions


Author: Rafael H. Villarreal
Journal: Proc. Amer. Math. Soc. 136 (2008), 1933-1943
MSC (2000): Primary 13B22; Secondary 13D40, 13F20
DOI: https://doi.org/10.1090/S0002-9939-08-09182-X
Published electronically: February 19, 2008
MathSciNet review: 2383499
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study the normalization of a monomial ideal, and show how to compute its Hilbert function (using Ehrhart polynomials) if the ideal is zero dimensional. A positive lower bound for the second coefficient of the Hilbert polynomial is shown.


References [Enhancements On Off] (What's this?)

  • 1. M. Aigner, Combinatorial Theory, Springer, 1997. MR 1434477
  • 2. A. Alcántar, Rees algebras of square-free Veronese ideals and their $ a$-invariants, Discrete Math. 302 (2005), 7-21. MR 2179232 (2007d:13003)
  • 3. A. Brøndsted, Introduction to Convex Polytopes, Springer-Verlag, 1983. MR 683612 (84d:52009)
  • 4. W. Bruns and J. Herzog, Cohen-Macaulay Rings, Revised Edition, Cambridge University Press, 1997. MR 1251956 (95h:13020)
  • 5. W. Bruns and R. Koch, NORMALIZ, computing normalizations of affine semigroups, 2003. Available from: ftp.mathematik.Uni-Osnabrueck.DE/pub/osm/kommalg/software.
  • 6. W. Bruns, W. V. Vasconcelos and R. H. Villarreal, Degree bounds in monomial subrings, Illinois J. Math. 41 (1997), 341-353. MR 1458177 (98e:13013)
  • 7. A. Capani, G. Niesi and L. Robbiano, CoCoA: A system for doing computations in commutative algebra. 1998. Available via anonymous ftp from lancelot.dima.unige.it.
  • 8. D. Delfino, A. Taylor, W. V. Vasconcelos, R. H. Villarreal and N. Weininger, Monomial ideals and the computation of multiplicities, Commutative ring theory and applications (Fez, 2001), pp. 87-106, Lecture Notes in Pure and Appl. Math. 231, Dekker, New York, 2003. MR 2029820 (2005g:13015)
  • 9. M. Hochster, Rings of invariants of tori, Cohen-Macaulay rings generated by monomials, and polytopes, Ann. of Math. 96 (1972), 318-337. MR 0304376 (46:3511)
  • 10. B. Korte and J. Vygen, Combinatorial Optimization. Theory and Algorithms, Algorithms and Combinatorics 21, Third Edition, Springer-Verlag, Berlin, 2000. MR 1764207 (2001g:90002)
  • 11. T. Marley, The coefficients of the Hilbert polynomial and the reduction number of an ideal, J. London Math. Soc. 40 (1989), 1-8. MR 1028910 (90m:13026)
  • 12. C. Polini, B. Ulrich and W. V. Vasconcelos, Normalization of ideals and Briançon-Skoda numbers, Math. Res. Lett. 12 (2005), nos. 5-6, 827-842. MR 2189243 (2006m:13006)
  • 13. A. Schrijver, Theory of Linear and Integer Programming, John Wiley & Sons, Chichester, 1986. MR 874114 (88m:90090)
  • 14. W. V. Vasconcelos, Integral Closure, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2005. MR 2153889 (2006m:13007)
  • 15. R. H. Villarreal, Monomial Algebras, Dekker, New York, 2001. MR 1800904 (2002c:13001)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 13B22, 13D40, 13F20

Retrieve articles in all journals with MSC (2000): 13B22, 13D40, 13F20


Additional Information

Rafael H. Villarreal
Affiliation: Departamento de Matemáticas, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 14–740, 07000 México City, D.F., Mexico
Email: vila@math.cinvestav.mx

DOI: https://doi.org/10.1090/S0002-9939-08-09182-X
Keywords: Normalization, Hilbert polynomial, monomial ideal, Rees algebra
Received by editor(s): September 15, 2005
Received by editor(s) in revised form: January 7, 2007
Published electronically: February 19, 2008
Additional Notes: This work was partially supported by CONACyT grant 49251-F and SNI, México
Communicated by: Bernd Ulrich
Article copyright: © Copyright 2008 American Mathematical Society

American Mathematical Society