Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Topological Radon transforms and degree formulas for dual varieties


Authors: Yutaka Matsui and Kiyoshi Takeuchi
Journal: Proc. Amer. Math. Soc. 136 (2008), 2365-2373
MSC (2000): Primary 14B05, 14N99, 32C38, 35A27, 53A20
Published electronically: March 11, 2008
MathSciNet review: 2390503
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We give a simpler and purely topological proof of Ernström's class formula (1997) for the degree of dual varieties. Our new proof also allows us to obtain a formula describing the degrees of the associated varieties studied by Gelfand, Kapranov and Zelevinsky (1994).


References [Enhancements On Off] (What's this?)

  • 1. Mauro C. Beltrametti, M. Lucia Fania, and Andrew J. Sommese, On the discriminant variety of a projective manifold, Forum Math. 4 (1992), no. 6, 529–547. MR 1189013, 10.1515/form.1992.4.529
  • 2. Jean-Luc Brylinski, Transformations canoniques, dualité projective, théorie de Lefschetz, transformations de Fourier et sommes trigonométriques, Astérisque 140-141 (1986), 3–134, 251 (French, with English summary). Géométrie et analyse microlocales. MR 864073
  • 3. Lars Ernström, Topological Radon transforms and the local Euler obstruction, Duke Math. J. 76 (1994), no. 1, 1–21. MR 1301184, 10.1215/S0012-7094-94-07601-1
  • 4. Lars Ernström, A Plücker formula for singular projective varieties, Comm. Algebra 25 (1997), no. 9, 2897–2901. MR 1458736, 10.1080/00927879708826029
  • 5. I. M. Gel′fand and M. M. Kapranov, On the dimension and degree of the projective dual variety: a 𝑞-analog of the Katz-Kleiman formula, The Gel′fand Mathematical Seminars, 1990–1992, Birkhäuser Boston, Boston, MA, 1993, pp. 27–33. MR 1247282
  • 6. I. M. Gel′fand, M. M. Kapranov, and A. V. Zelevinsky, Discriminants, resultants, and multidimensional determinants, Mathematics: Theory & Applications, Birkhäuser Boston, Inc., Boston, MA, 1994. MR 1264417
  • 7. Audun Holme, The geometric and numerical properties of duality in projective algebraic geometry, Manuscripta Math. 61 (1988), no. 2, 145–162. MR 943533, 10.1007/BF01259325
  • 8. Masaki Kashiwara, Systems of microdifferential equations, Progress in Mathematics, vol. 34, Birkhäuser Boston, Inc., Boston, MA, 1983. Based on lecture notes by Teresa Monteiro Fernandes translated from the French; With an introduction by Jean-Luc Brylinski. MR 725502
  • 9. Masaki Kashiwara and Pierre Schapira, Sheaves on manifolds, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 292, Springer-Verlag, Berlin, 1990. With a chapter in French by Christian Houzel. MR 1074006
  • 10. Steven L. Kleiman, The enumerative theory of singularities, Real and complex singularities (Proc. Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976) Sijthoff and Noordhoff, Alphen aan den Rijn, 1977, pp. 297–396. MR 0568897
  • 11. R. D. MacPherson, Chern classes for singular algebraic varieties, Ann. of Math. (2) 100 (1974), 423–432. MR 0361141
  • 12. Yutaka Matsui, Radon transforms of constructible functions on Grassmann manifolds, Publ. Res. Inst. Math. Sci. 42 (2006), no. 2, 551–580. MR 2250073
  • 13. Yutaka Matsui and Kiyoshi Takeuchi, Microlocal study of topological Radon transforms and real projective duality, Adv. Math. 212 (2007), no. 1, 191–224. MR 2319767, 10.1016/j.aim.2006.10.001
  • 14. Y. Matsui and K. Takeuchi, Generalized Plücker-Teissier-Kleiman formulas for varieties with arbitrary dual defect, Proceedings of Australian-Japanese workshop on real and complex singularities, World Scientific, 2007, pp. 248-270.
  • 15. Y. Matsui and K. Takeuchi, Projective duality and topological X-ray Radon transforms, in preparation.
  • 16. A. Parusiński, Multiplicity of the dual variety, Bull. London Math. Soc. 23 (1991), no. 5, 429–436. MR 1141011, 10.1112/blms/23.5.429
  • 17. P. Schapira, Tomography of constructible functions, Applied algebra, algebraic algorithms and error-correcting codes (Paris, 1995) Lecture Notes in Comput. Sci., vol. 948, Springer, Berlin, 1995, pp. 427–435. MR 1448182, 10.1007/3-540-60114-7_33
  • 18. E. A. Tevelev, Projective duality and homogeneous spaces, Encyclopaedia of Mathematical Sciences, vol. 133, Springer-Verlag, Berlin, 2005. Invariant Theory and Algebraic Transformation Groups, IV. MR 2113135
  • 19. O. Ya. Viro, Some integral calculus based on Euler characteristic, Topology and geometry—Rohlin Seminar, Lecture Notes in Math., vol. 1346, Springer, Berlin, 1988, pp. 127–138. MR 970076, 10.1007/BFb0082775
  • 20. C. T. C. Wall, Singular points of plane curves, London Mathematical Society Student Texts, vol. 63, Cambridge University Press, Cambridge, 2004. MR 2107253

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 14B05, 14N99, 32C38, 35A27, 53A20

Retrieve articles in all journals with MSC (2000): 14B05, 14N99, 32C38, 35A27, 53A20


Additional Information

Yutaka Matsui
Affiliation: Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8914, Japan
Email: you317@ms.u-tokyo.ac.jp

Kiyoshi Takeuchi
Affiliation: Institute of Mathematics, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8571, Japan
Email: takemicro@nifty.com

DOI: https://doi.org/10.1090/S0002-9939-08-09270-8
Received by editor(s): September 13, 2005
Received by editor(s) in revised form: November 16, 2006, March 7, 2007, and May 7, 2007
Published electronically: March 11, 2008
Communicated by: Ted Chinburg
Article copyright: © Copyright 2008 American Mathematical Society