Surfaces violating Bogomolov-Miyaoka-Yau in positive characteristic

Author:
Robert W. Easton

Journal:
Proc. Amer. Math. Soc. **136** (2008), 2271-2278

MSC (2000):
Primary 14J29

DOI:
https://doi.org/10.1090/S0002-9939-08-09466-5

Published electronically:
March 6, 2008

MathSciNet review:
2390492

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The Bogomolov-Miyaoka-Yau inequality asserts that the Chern numbers of a surface of general type in characteristic 0 satisfy the inequality , a consequence of which is . This inequality fails in characteristic , and here we produce infinite families of counterexamples for large . Our method parallels a construction of Hirzebruch, and relies on a construction of abelian covers due to Catanese and Pardini.

**[B]**F.A. Bogomolov,*Holomorphic tensors and vector bundles on projective manifolds*, Math. USSR-Izv.**13**(1979), 499-555. MR**0522939 (80j:14014)****[C]**F. Catanese,*On the moduli spaces of surfaces of general type*, J. Differential Geom.**19**(1984), no. 2, 483–515. MR**755236****[H1]**Friedrich Hirzebruch,*Automorphe Formen und der Satz von Riemann-Roch*, Symposium internacional de topología algebraica International symposium on algebraic topology, Universidad Nacional Autónoma de México and UNESCO, Mexico City, 1958, pp. 129–144 (German). MR**0103280****[H2]**F. Hirzebruch,*Arrangements of lines and algebraic surfaces*, Arithmetic and geometry, Vol. II, Progr. Math., vol. 36, Birkhäuser, Boston, Mass., 1983, pp. 113–140. MR**717609****[H3]**F. Hirzebruch,*Chern numbers of algebraic surfaces: an example*, Math. Ann.**266**(1984), no. 3, 351–356. MR**730175**, https://doi.org/10.1007/BF01475584**[L]**William E. Lang,*Examples of surfaces of general type with vector fields*, Arithmetic and geometry, Vol. II, Progr. Math., vol. 36, Birkhäuser Boston, Boston, MA, 1983, pp. 167–173. MR**717611****[M1]**Marco Manetti,*On the moduli space of diffeomorphic algebraic surfaces*, Invent. Math.**143**(2001), no. 1, 29–76. MR**1802792**, https://doi.org/10.1007/s002220000101**[M2]**Yoichi Miyaoka,*On the Chern numbers of surfaces of general type*, Invent. Math.**42**(1977), 225–237. MR**0460343**, https://doi.org/10.1007/BF01389789**[P]**Rita Pardini,*Abelian covers of algebraic varieties*, J. Reine Angew. Math.**417**(1991), 191–213. MR**1103912**, https://doi.org/10.1515/crll.1991.417.191**[R]**Miles Reid,*Bogomolov’s theorem 𝑐₁²≤4𝑐₂*, Proceedings of the International Symposium on Algebraic Geometry (Kyoto Univ., Kyoto, 1977) Kinokuniya Book Store, Tokyo, 1978, pp. 623–642. MR**578877****[V]**R. Vakil,*Murphy's law in algebraic geometry: Badly-behaved deformation spaces*, Invent. Math., to appear.**[Y]**Shing Tung Yau,*Calabi’s conjecture and some new results in algebraic geometry*, Proc. Nat. Acad. Sci. U.S.A.**74**(1977), no. 5, 1798–1799. MR**0451180**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
14J29

Retrieve articles in all journals with MSC (2000): 14J29

Additional Information

**Robert W. Easton**

Affiliation:
Department of Mathematics, University of Utah, Salt Lake City, Utah 84102

Email:
easton@math.utah.edu

DOI:
https://doi.org/10.1090/S0002-9939-08-09466-5

Keywords:
Bogomolov inequality,
abelian cover,
positive characteristic,
algebraic surface,
general type

Received by editor(s):
December 6, 2005

Published electronically:
March 6, 2008

Communicated by:
Ted Chinburg

Article copyright:
© Copyright 2008
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.