Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Modular forms of half-integral weight with few non-vanishing coefficients modulo $ \ell$


Author: D. Choi
Journal: Proc. Amer. Math. Soc. 136 (2008), 2683-2688
MSC (2000): Primary 11F11, 11F33
DOI: https://doi.org/10.1090/S0002-9939-08-09195-8
Published electronically: March 27, 2008
MathSciNet review: 2399029
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Bruinier and Ono classified cusp forms of half-integral weight

$\displaystyle F(z):=\sum_{n=0}^{\infty}a(n)q^n\in S_{\lambda+\frac{1}{2}}(\Gamma_0(N),\chi)\cap \mathbb{Z}[[q]]$

whose Fourier coefficients are not well distributed for modulo odd primes $ \ell$. Ahlgren and Boylan established bounds for the weight of such a cusp form and used these bounds to prove Newman's conjecture for the partition function for prime-power moduli. In this note, we give a simple proof of Ahlgren and Boylan's result on bounds of cusp forms of half-integral weight.


References [Enhancements On Off] (What's this?)

  • 1. S. Ahlgren and M. Boylan, Arithmetic properties of the partition function. Invent. Math. 153(3):487-502, 2003. MR 2000466 (2004e:11115)
  • 2. S. Ahlgren and M. Boylan, Coefficients of half-integral weight modular forms modulo $ l\sp j$. Math. Ann. 331(1):219-239, 2005. MR 2107445 (2005k:11091)
  • 3. Antal Balog, Henri Darmon and Ken Ono, Congruence for Fourier coefficients of half-integral weight modular forms and special values of $ L$-functions. (English summary) Analytic number theory, Vol. 1 (Allerton Park, IL, 1995), 105-128, Progr. Math., 138, Birkhäuser Boston, Boston, MA, 1996. MR 1399333 (97e:11056)
  • 4. Jan Hendrik Bruinier, Non-vanishing modulo $ \ell$ of Fourier coefficients of half-integral weight modular forms. Duke Math. J. 98(3):595-611, 1999. MR 1695803 (2000d:11061)
  • 5. J. H. Bruinier and K. Ono, Coefficients of half-integral weight modular forms, J. Number Theory 99(1): 164-179, 2003. MR 1957250 (2004b:11056)
  • 6. Benedict H. Gross, A tameness criterion for Galois representations associated to modular forms $ \pmod p$. Duke Math. J. 61(2):445-517, 1990. MR 1074305 (91i:11060)
  • 7. K. Ono, The web of modularity: Arithmetic of the coefficients of modular forms and $ q$-series, CBMS Regional Conf. Series in Math., vol. 102, Amer. Math. Soc., 2004. MR 2020489 (2005c:11053)
  • 8. Ken Ono, Christopher Skinner, Fourier coefficients of half-integral weight modular forms modulo $ l$, Ann. of Math. (2), 147(2):453-470, 1998. MR 1626761 (99f:11059a)
  • 9. Ken Ono, Christopher Skinner, Corrigendum: ``Fourier coefficients of half-integral weight modular forms modulo $ l$'', Ann. of Math. (2), 148(1):361, 1998. MR 1652912 (99f:11059b)
  • 10. Jean-Pierre Serre, Formes modulaires et fonctions zeta $ p$-adiques (French). Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, 1972), pp. 191-268. Lecture Notes in Math., vol. 350, Springer, Berlin, 1973. MR 0404145 (53:7949a)
  • 11. H. P. F. Swinnerton-Dyer, On $ l$-adic representations and congruences for coefficients of modular forms. Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, 1972), pp. 1-55. Lecture Notes in Math., vol. 350, Springer, Berlin, 1973. MR 0406931 (53:10717a)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 11F11, 11F33

Retrieve articles in all journals with MSC (2000): 11F11, 11F33


Additional Information

D. Choi
Affiliation: School of Mathematics, KIAS, 207-43 Cheongnyangni 2-dong 130-722, Korea
Email: choija@postech.ac.kr

DOI: https://doi.org/10.1090/S0002-9939-08-09195-8
Keywords: Modular forms, congruences
Received by editor(s): January 12, 2007
Received by editor(s) in revised form: April 24, 2007
Published electronically: March 27, 2008
Communicated by: Ken Ono
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society