Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the $ H^1$-$ L^1$ boundedness of operators


Authors: Stefano Meda, Peter Sjögren and Maria Vallarino
Journal: Proc. Amer. Math. Soc. 136 (2008), 2921-2931
MSC (2000): Primary 42B30, 46A22
DOI: https://doi.org/10.1090/S0002-9939-08-09365-9
Published electronically: April 3, 2008
MathSciNet review: 2399059
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that if $ q$ is in $ (1,\infty)$, $ Y$ is a Banach space, and $ T$ is a linear operator defined on the space of finite linear combinations of $ (1,q)$-atoms in $ \mathbb{R}^n$ with the property that

$\displaystyle \sup\{\Vert{Ta}\Vert {Y}: \hbox{$a$ is a $(1,q)$-atom} \} < \infty, $

then $ T$ admits a (unique) continuous extension to a bounded linear operator from $ H^1({\mathbb{R}^n})$ to $ Y$. We show that the same is true if we replace $ (1,q)$-atoms by continuous $ (1,\infty)$-atoms. This is known to be false for $ (1,\infty)$-atoms.


References [Enhancements On Off] (What's this?)

  • 1. N. Bourbaki, Topological Vector Spaces. Chapters 1-5, Elements of Mathematics, Springer-Verlag, Berlin, Heidelberg, New York, 1987. MR 910295 (88g:46002)
  • 2. M. Bownik, Anisotropic Hardy spaces and wavelets, Mem. Amer. Math. Soc. 164 (2003), vi+122 pp. MR 1982689 (2004e:42023)
  • 3. M. Bownik, Boundedness of operators on Hardy spaces via atomic decompositions, Proc. Amer. Math. Soc. 133 (2005), 3535-3542. MR 2163588 (2006d:42028)
  • 4. A. Carbonaro, G. Mauceri, S. Meda, $ H^1$, $ BMO$ and singular integrals for certain measured metric spaces, submitted.
  • 5. R. R. Coifman, G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569-645. MR 0447954 (56:6264)
  • 6. G. B. Folland, E. M. Stein, Hardy spaces on homogeneous groups, Princeton University Press, 1982. MR 657581 (84h:43027)
  • 7. J. García-Cuerva, J. L. Rubio de Francia, Weighted norm inequalities and related topics, North-Holland, 1985. MR 807149 (87d:42023)
  • 8. L. Grafakos, Classical and Modern Fourier Analysis, Pearson, 2004.
  • 9. L. Grafakos, L. Liu, D. Yang, Maximal function characterizations of Hardy spaces on RD-spaces and their applications, submitted.
  • 10. G. Mauceri, S. Meda, $ BMO$ and $ H^1$ for the Ornstein-Uhlenbeck operator, J. Funct. Anal. 252 (2007), 278-313. MR 2357358
  • 11. Y. Meyer, R. R. Coifman, Wavelets. Calderón-Zygmund and multilinear operators, Cambridge University Press, Cambridge, 1997. MR 1456993 (98e:42001)
  • 12. Y. Meyer, M. H. Taibleson, G. Weiss, Some functional analytic properties of the spaces $ B\sb q$ generated by blocks, Indiana Univ. Math. J. 34 (1985), 493-515. MR 794574 (87c:46036)
  • 13. P. Sjögren, Lectures on atomic $ H^p$ spaces theory in $ \mathbb{R}^n$, Lecture Notes, University of Umeå, n. 5, 1981. See also www.chalmers.se/math/SV/kontakt/personal/larare-och-forskare/sjogren-peter.
  • 14. E. M. Stein, Singular integrals and differentiability properties of functions, Princeton University Press, 1970. MR 0290095 (44:7280)
  • 15. E. M. Stein, Harmonic analysis. Real variable methods, orthogonality and oscillatory integrals, Princeton Math. Series, No. 43, Princeton, NJ, 1993. MR 1232192 (95c:42002)
  • 16. M. Vallarino, Spaces $ H^1$ and $ BMO$ on $ ax+b$-groups, submitted.
  • 17. D. Yang, Y. Zhou, A boundedness criterion via atoms for linear operators in Hardy spaces, to appear in Constr. Approx.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 42B30, 46A22

Retrieve articles in all journals with MSC (2000): 42B30, 46A22


Additional Information

Stefano Meda
Affiliation: Dipartimento di Matematica e Applicazioni, Universitá degli Studi di Milano–Bicocca, Via Cozzi, 53, 20125 Milano, Italy
Email: stefano.meda@unimib.it

Peter Sjögren
Affiliation: Department of Mathematical Sciences, University of Gothenburg, SE-412 96 Göteborg, Sweden; and Department of Mathematical Sciences, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
Email: peters@math.chalmers.se

Maria Vallarino
Affiliation: Laboratoire MAPMO UMR 6628, Fédération Denis Poisson, Université d’Orléans, UFR Sciences, Bâtiment de mathématiques – Route de Chartres, B.P. 6759 – 45067 Orléans cedex 2, France
Email: maria.vallarino@unimib.it

DOI: https://doi.org/10.1090/S0002-9939-08-09365-9
Keywords: BMO, atomic Hardy space, extension of operators.
Received by editor(s): June 18, 2007
Published electronically: April 3, 2008
Additional Notes: This work was partially supported by the Progetto Cofinanziat “Analisi Armonica”.
Communicated by: Andreas Seeger
Article copyright: © Copyright 2008 American Mathematical Society

American Mathematical Society