Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Homogeneous and inhomogeneous manifolds


Authors: Paul Gartside, David Gauld and Sina Greenwood
Journal: Proc. Amer. Math. Soc. 136 (2008), 3363-3373
MSC (2000): Primary 54D10, 54D20, 57R30, 57N05, 57S05
DOI: https://doi.org/10.1090/S0002-9939-08-09343-X
Published electronically: May 6, 2008
MathSciNet review: 2407104
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: All metaLindelöf, and most countably paracompact, homogeneous manifolds are Hausdorff. Metacompact manifolds are never rigid. Every countable group can be realized as the group of autohomeomorphisms of a Lindelöf manifold. There is a rigid foliation of the plane.


References [Enhancements On Off] (What's this?)

  • 1. M. Baillif and A. Gabard, Manifolds: Hausdorffness versus homogeneity, Proc. Amer. Math. Soc. 136 (2008), 1105-1111. MR 2361887
  • 2. A. Blass and J. Kister, Free subgroups of the homeomorphism group of the reals, Topology Appl. 24 (1986), 243-252. MR 872496 (88f:20039)
  • 3. P. Gartside and A. Glyn, Autohomeomorphism groups, Topology Appl. 129 (2003), 103-110. MR 1961392 (2004g:54044)
  • 4. P. Gartside and R. Knight, Ubiquity of free subgroups, Bull. Lond. Math. Soc. 35 (2003), 624-634. MR 1989491 (2004e:22002)
  • 5. A. Haefliger, Sur les feuilletages des variétés de dimension $ n$ par des feuilles fermées de dimension $ n-1$, Colloque de Topologie de Strasbourg, 1955.
  • 6. A. Haefliger and G. Reeb, Variétés (non séparées) à une dimension et structures feuilletées du plan, Enseignement Math. (2) 3 (1957), 107-125. MR 0089412 (19:671c)
  • 7. S. Harris and R. Low, Causal monotonicity, omniscient foliations and the shape of space, Classical Quantum Gravity 18 (2001), 27-43. MR 1805136 (2001i:53115)
  • 8. S. Hawking and G. Ellis, The Large Scale Structure of Space-Time, Cambridge University Press, London-New York, 1973. MR 0424186 (54:12154)
  • 9. I. Tamura, Topology of Foliations: An Introduction, Transl. Math. Monogr., vol. 97, Amer. Math. Soc., Providence, RI, 1992. MR 1151624 (93c:57021)
  • 10. N. Woodhouse and L. Mason, The Geroch group and non-Hausdorff twistor spaces, Nonlinearity 1 (1988), 73-114. MR 928949 (89j:83034)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 54D10, 54D20, 57R30, 57N05, 57S05

Retrieve articles in all journals with MSC (2000): 54D10, 54D20, 57R30, 57N05, 57S05


Additional Information

Paul Gartside
Affiliation: Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
Email: gartside@math.pitt.edu

David Gauld
Affiliation: Department of Mathematics, University of Auckland, Auckland, New Zealand
Email: d.gauld@auckland.ac.nz

Sina Greenwood
Affiliation: Department of Mathematics, University of Auckland, Auckland, New Zealand
Email: s.greenwood@auckland.ac.nz

DOI: https://doi.org/10.1090/S0002-9939-08-09343-X
Keywords: Manifold, not Hausdorff, homogeneous, rigid, foliations
Received by editor(s): May 22, 2007
Received by editor(s) in revised form: August 8, 2007
Published electronically: May 6, 2008
Additional Notes: This work was supported in part by the Marsden Fund Council from government funding, administered by the Royal Society of New Zealand.
Communicated by: Alexander N. Dranishnikov
Article copyright: © Copyright 2008 American Mathematical Society

American Mathematical Society