Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

An $ EL$-labeling of the subgroup lattice


Author: Russ Woodroofe
Journal: Proc. Amer. Math. Soc. 136 (2008), 3795-3801
MSC (2000): Primary 06A07; Secondary 05E25, 20E15.
DOI: https://doi.org/10.1090/S0002-9939-08-09586-5
Published electronically: June 9, 2008
MathSciNet review: 2425717
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In a 2001 paper, Shareshian conjectured that the subgroup lattice of a finite, solvable group has an $ EL$-labeling. We construct such a labeling and verify that our labeling has the expected properties.


References [Enhancements On Off] (What's this?)

  • 1. Anders Björner, Shellable and Cohen-Macaulay partially ordered sets, Trans. Amer. Math. Soc. 260 (1980), no. 1, 159-183. MR 0570784 (81i:06001)
  • 2. Anders Björner and Michelle L. Wachs, On lexicographically shellable posets, Trans. Amer. Math. Soc. 277 (1983), no. 1, 323-341. MR 0690055 (84f:06004)
  • 3. -, Shellable nonpure complexes and posets. I, Trans. Amer. Math. Soc. 348 (1996), no. 4, 1299-1327. MR 1333388 (96i:06008)
  • 4. -, Shellable nonpure complexes and posets. II, Trans. Amer. Math. Soc. 349 (1997), no. 10, 3945-3975. MR 1401765 (98b:06008)
  • 5. Andreas Blass and Bruce E. Sagan, Möbius functions of lattices, Adv. Math. 127 (1997), no. 1, 94-123. MR 1445364 (98c:06001)
  • 6. Klaus Doerk and Trevor Hawkes, Finite soluble groups, de Gruyter Expositions in Mathematics, vol. 4, Walter de Gruyter & Co., Berlin, 1992. MR 1169099 (93k:20033)
  • 7. Patricia Hersh and John Shareshian, Chains of modular elements and lattice connectivity, Order 23 (2006), no. 4, 339-342 (2007). MR 2309698 (2008b:06007)
  • 8. Larry Shu-Chung Liu, Left-modular elements and edge labellings, Ph.D. thesis, Michigan State University, 1999.
  • 9. Shu-Chung Liu and Bruce E. Sagan, Left-modular elements of lattices, J. Combin. Theory Ser. A 91 (2000), no. 1-2, 369-385, In memory of Gian-Carlo Rota. MR 1780030 (2001k:06014)
  • 10. Peter McNamara and Hugh Thomas, Poset edge-labellings and left modularity, European Journal of Combinatorics 27 (2006), no. 1, 101-113. MR 2186421 (2006g:06005)
  • 11. Derek J. S. Robinson, A course in the theory of groups, Graduate Texts in Mathematics, vol. 80, Springer-Verlag, New York, 1996. MR 1357169 (96f:20001)
  • 12. John Shareshian, On the shellability of the order complex of the subgroup lattice of a finite group, Trans. Amer. Math. Soc. 353 (2001), no. 7, 2689-2703 (electronic). MR 1828468 (2002k:06006)
  • 13. Jacques Thévenaz, The top homology of the lattice of subgroups of a soluble group, Discrete Math. 55 (1985), no. 3, 291-303. MR 0802667 (86j:20045)
  • 14. Hugh Thomas, Graded left modular lattices are supersolvable, Algebra Universalis 53 (2005), no. 4, 481-489. MR 2219407 (2006k:06026)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 06A07, 05E25, 20E15.

Retrieve articles in all journals with MSC (2000): 06A07, 05E25, 20E15.


Additional Information

Russ Woodroofe
Affiliation: Department of Mathematics, Washington University, St. Louis, Missouri 63130
Email: russw@math.wustl.edu

DOI: https://doi.org/10.1090/S0002-9939-08-09586-5
Received by editor(s): September 19, 2007
Published electronically: June 9, 2008
Communicated by: Jim Haglund
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society