Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Cheeger's constant in balls and isoperimetric inequality on Riemannian manifolds

Author: Joel García León
Journal: Proc. Amer. Math. Soc. 136 (2008), 4445-4452
MSC (2000): Primary 58Cxx
Published electronically: July 15, 2008
MathSciNet review: 2431061
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove isoperimetric inequality on a Riemannian manifold, assuming that the Cheeger constant for balls satisfies a certain estimation.

References [Enhancements On Off] (What's this?)

  • 1. Ballman, W., Gromov, M., and Schroeder, V. Manifolds of Nonpositive Curvature. Progress in Mathematics, Vol. 61, Birkhäuser Boston, 1985. MR 0823981 (87h:53050)
  • 2. Chavel, I. Isoperimetric Inequalities: Differential Geometric and Analytic Perspectives. Cambridge Tracts in Mathematics, 145, Cambridge University Press, 2001. MR 1849187 (2002h:58040)
  • 3. Chung, F.R.K., Grigor'yan, A.A., Yau, S.-T. Higher eigenvalues and isoperimetric inequalities on Riemannian manifolds and graphs. Comm. Anal. Geom. 8 (2000), no. 5, 969-1026. MR 1846124 (2002g:58038)
  • 4. Faber, C. Beweiss, das unter allen homogenen Membrane von gleicher Spannung die kreisförmige die tiefsten Grundton gibt. Sitzungsber.-Bayer. Akad. Wiss., Math.-Phys. Munich (1923), 169-172.
  • 5. Garcıa León, J. Cheeger Constant and Isoperimetric Inequalities on Riemannian Manifolds, Ph.D. thesis, Imperial College, London, 2005.
  • 6. Grigor'yan, A.A. Estimates of Heat Kernel on Riemann Manifolds. London Mathematical Society, Lecture Note Series, 273, Cambridge University Press, 1999, pp. 140-225. MR 1736868 (2001b:58040)
  • 7. Krahn, E. Über eine von Rayleigh formulierte Minmaleigenschaft des Kreises. Math. Ann. 94 (1925), 97-100. MR 1512244
  • 8. Maz'ja, V.G. Sobolev Spaces. Springer-Verlag, 1985. MR 0817985 (87g:46056)
  • 9. Michael, J.H., Simon, L.M. Sobolev and mean-value inequalities on generalized submanifolds of $ \mh{R}^{n}$. Comm. Pure and Appl. Math. 26 (1973), 361-379. MR 0344978 (49:9717)
  • 10. Osserman, R. Minimal varieties, Bull. Amer. Math. Soc. 75 (1969), no. 6, 1092-1120. MR 0276875 (43:2615)
  • 11. Pólya, G., Szegö, G. Isoperimetric Inequalities in Mathematical Physics. Annals of Math. Studies, 27, Princeton University Press, 1951. MR 0043486 (13:270d)
  • 12. Rayleigh, J.W.S. The Theory of Sound. Macmillan, London, 1877. (Reprinted: Dover, New York, 1945). MR 0016009 (7:500e)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 58Cxx

Retrieve articles in all journals with MSC (2000): 58Cxx

Additional Information

Joel García León
Affiliation: Department of Mathematics, Imperial College, London, SW7 2BZ, United Kingdom
Address at time of publication: Departamento de Matemáticas, Facultad de Ciencias, UNAM, México, D. F., México

Keywords: Differential geometry, mathematical analysis, Cheeger's constant and isoperimetric inequality.
Received by editor(s): August 3, 2005
Received by editor(s) in revised form: October 20, 2005
Published electronically: July 15, 2008
Additional Notes: The author was supported in part by CONACyT, México
Dedicated: To Veronica, Emiliano and Camilo
Communicated by: Richard A. Wentworth
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society