Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Spacelike hypersurfaces with constant mean curvature in the steady state space


Authors: Alma L. Albujer and Luis J. Alías
Journal: Proc. Amer. Math. Soc. 137 (2009), 711-721
MSC (2000): Primary 53C42, 53C50
Published electronically: September 4, 2008
MathSciNet review: 2448594
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We consider complete spacelike hypersurfaces with constant mean curvature in the open region of de Sitter space known as the steady state space. We prove that if the hypersurface is bounded away from the infinity of the ambient space, then the mean curvature must be $ H=1$. Moreover, in the 2-dimensional case we obtain that the only complete spacelike surfaces with constant mean curvature which are bounded away from the infinity are the totally umbilical flat surfaces. We also derive some other consequences for hypersurfaces which are bounded away from the future infinity. Finally, using an isometrically equivalent model for the steady state space, we extend our results to a wider family of spacetimes.


References [Enhancements On Off] (What's this?)

  • 1. L. V. Ahlfors, Sur le type d'une surface de Riemann, C.R. Acad. Sci. Paris 201 (1935), 30-32.
  • 2. Kazuo Akutagawa, On spacelike hypersurfaces with constant mean curvature in the de Sitter space, Math. Z. 196 (1987), no. 1, 13–19. MR 907404, 10.1007/BF01179263
  • 3. Luis J. Alías, Alfonso Romero, and Miguel Sánchez, Uniqueness of complete spacelike hypersurfaces of constant mean curvature in generalized Robertson-Walker spacetimes, Gen. Relativity Gravitation 27 (1995), no. 1, 71–84. MR 1310212, 10.1007/BF02105675
  • 4. H. Bondi and T. Gold, On the generation of magnetism by fluid motion, Monthly Not. Roy. Astr. Soc. 110 (1950), 607–611. MR 0044363
  • 5. A. Caminha and H. F. de Lima, Complete vertical graphs with constant mean curvature in semi-Riemannian warped products, http://arxiv.org/abs/math/0609602
  • 6. Gregory J. Galloway, Cosmological spacetimes with Λ>0, Advances in differential geometry and general relativity, Contemp. Math., vol. 359, Amer. Math. Soc., Providence, RI, 2004, pp. 87–101. MR 2096155, 10.1090/conm/359/06557
  • 7. S. W. Hawking and G. F. R. Ellis, The large scale structure of space-time, Cambridge University Press, London-New York, 1973. Cambridge Monographs on Mathematical Physics, No. 1. MR 0424186
  • 8. F. Hoyle, A new model for the expanding universe, Monthly Not. Roy. Astr. Soc. 108 (1948), 372-382.
  • 9. Alfred Huber, On subharmonic functions and differential geometry in the large, Comment. Math. Helv. 32 (1957), 13–72. MR 0094452
  • 10. Shoshichi Kobayashi and Katsumi Nomizu, Foundations of differential geometry. Vol. II, Interscience Tracts in Pure and Applied Mathematics, No. 15 Vol. II, Interscience Publishers John Wiley & Sons, Inc., New York-London-Sydney, 1969. MR 0238225
  • 11. Sebastián Montiel, Complete non-compact spacelike hypersurfaces of constant mean curvature in de Sitter spaces, J. Math. Soc. Japan 55 (2003), no. 4, 915–938. MR 2003752, 10.2969/jmsj/1191418756
  • 12. Barrett O’Neill, Semi-Riemannian geometry, Pure and Applied Mathematics, vol. 103, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1983. With applications to relativity. MR 719023
  • 13. Jayakumar Ramanathan, Complete spacelike hypersurfaces of constant mean curvature in de Sitter space, Indiana Univ. Math. J. 36 (1987), no. 2, 349–359. MR 891779, 10.1512/iumj.1987.36.36020
  • 14. S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity, John Wiley & Sons, New York, 1972.
  • 15. Shing Tung Yau, Harmonic functions on complete Riemannian manifolds, Comm. Pure Appl. Math. 28 (1975), 201–228. MR 0431040

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 53C42, 53C50

Retrieve articles in all journals with MSC (2000): 53C42, 53C50


Additional Information

Alma L. Albujer
Affiliation: Departamento de Matemáticas, Universidad de Murcia, E-30100 Espinardo, Murcia, Spain
Email: albujer@um.es

Luis J. Alías
Affiliation: Departamento de Matemáticas, Universidad de Murcia, E-30100 Espinardo, Murcia, Spain
Email: ljalias@um.es

DOI: http://dx.doi.org/10.1090/S0002-9939-08-09546-4
Keywords: de Sitter space, steady state space, spacelike hypersurface, mean curvature, parabolicity
Received by editor(s): May 31, 2007
Received by editor(s) in revised form: February 5, 2008
Published electronically: September 4, 2008
Additional Notes: The first author was supported by FPU Grant AP2004-4087 from Secretaría de Estado de Universidades e Investigación, MEC Spain.
This research is a result of the activity developed within the framework of the Programme in Support of Excellence Groups of the Región de Murcia, Spain, by Fundación Séneca, Regional Agency for Science and Technology (Regional Plan for Science and Technology 2007-2010).
This research was partially supported by MEC project MTM2007-64504 and Fundación Séneca project 04540/GERM/06, Spain.
Communicated by: Richard A. Wentworth
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.