A note on zeroes of real polynomials in spaces

Author:
Jesús Ferrer

Journal:
Proc. Amer. Math. Soc. **137** (2009), 573-577

MSC (2000):
Primary 47H60, 46B26

Published electronically:
August 19, 2008

MathSciNet review:
2448577

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For real spaces, we show that being injected in a Hilbert space is a 3-space property. As a consequence, we obtain that, when does not carry a strictly positive Radon measure, every quadratic continuous homogeneous real-valued polynomial on admits a linear zero subspace enjoying a property which implies non-separability.

**1.**R. M. Aron, C. Boyd, R. A. Ryan, and I. Zalduendo,*Zeros of polynomials on Banach spaces: the real story*, Positivity**7**(2003), no. 4, 285–295. MR**2017308**, 10.1023/A:1026278115574**2.**T. Banakh, A. Plichko, and A. Zagorodnyuk,*Zeros of quadratic functionals on non-separable spaces*, Colloq. Math.**100**(2004), no. 1, 141–147. MR**2079354**, 10.4064/cm100-1-13**3.**Jesús Ferrer,*On the zero-set of real polynomials in non-separable Banach spaces*, Publ. Res. Inst. Math. Sci.**43**(2007), no. 3, 685–697. MR**2361792****4.**Jesús Ferrer,*Zeroes of real polynomials on 𝐶(𝐾) spaces*, J. Math. Anal. Appl.**336**(2007), no. 2, 788–796. MR**2352980**, 10.1016/j.jmaa.2007.02.083**5.**N. J. Kalton and N. T. Peck,*Twisted sums of sequence spaces and the three space problem*, Trans. Amer. Math. Soc.**255**(1979), 1–30. MR**542869**, 10.1090/S0002-9947-1979-0542869-X**6.**Haskell P. Rosenthal,*On injective Banach spaces and the spaces 𝐿^{∞}(𝜇) for finite measure 𝜇*, Acta Math.**124**(1970), 205–248. MR**0257721**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
47H60,
46B26

Retrieve articles in all journals with MSC (2000): 47H60, 46B26

Additional Information

**Jesús Ferrer**

Affiliation:
Departamento de Análisis Matemático, Universidad de Valencia, Dr. Moliner, 50, 46100 Burjasot (Valencia), Spain

Email:
Jesus.Ferrer@uv.es

DOI:
https://doi.org/10.1090/S0002-9939-08-09574-9

Keywords:
Quadratic polynomials,
zero-set,
$C(K)$ spaces

Received by editor(s):
January 23, 2008

Published electronically:
August 19, 2008

Additional Notes:
The author has been partially supported by MEC and FEDER Project MTM2005-08210

Communicated by:
Nigel J. Kalton

Article copyright:
© Copyright 2008
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.