Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Homology of real algebraic varieties and morphisms to spheres

Author: Ali Öztürk
Journal: Proc. Amer. Math. Soc. 137 (2009), 505-509
MSC (2000): Primary 14P25; Secondary 14P05
Published electronically: September 15, 2008
MathSciNet review: 2448570
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ X$ and $ Y$ be affine nonsingular real algebraic varieties. One of the classical problems in real algebraic geometry is whether a given $ C^\infty$ mapping $ f:X\rightarrow Y$ can be approximated by entire rational mappings in the space of $ C^\infty$ mappings. In this work, we obtain some sufficient conditions in the case when $ Y$ is the standard sphere $ S^n$.

References [Enhancements On Off] (What's this?)

  • 1. S. Akbulut, H. King, Topology of Real Algebraic Sets, M.S.R.I. book series (Springer, New York, 1992). MR 1225577 (94m:57001)
  • 2. J. Bochnak, M. Coste, M.F. Roy, Real Algebraic Geometry, Ergebnisse der Math., vol. 36 (Springer, Berlin, 1998). MR 1659509 (2000a:14067)
  • 3. J. Bochnak and W. Kucharz, On real algebraic morphisms into even-dimensional spheres, Ann. of Math. (2), 128 (1988) 415-433. MR 960952 (89k:57060)
  • 4. J. Bochnak, M. Buchner and W. Kucharz, Vector bundles over real algebraic varieties, $ K$-Theory, 3 (1990) 271-298. MR 1040403 (91b:14075)
  • 5. J. Bochnak and W. Kucharz, Algebraic approximation of mappings into spheres, Michigan Math. J., 34 (1987) 119-125. MR 873026 (88h:58018)
  • 6. J. Bochnak and W. Kucharz, Complex cycles on real algebraic models of a smooth manifold, Proc. Amer. Math. Soc., 114 (1992) 1097-1104. MR 1093594 (93g:57032)
  • 7. J. Bochnak and W. Kucharz, Algebraic models of smooth manifolds, Invent. Math., 97 (1989) 585-611. MR 1005007 (91b:14076)
  • 8. G.E. Bredon, Topology and Geometry (Springer, New York, 1993). MR 1224675 (94d:55001)
  • 9. N. Ivanov, Approximation of smooth manifolds by real algebraic sets, Russian Math. Surveys, 37 (1982) 1-59. MR 643764 (84i:57029)
  • 10. J. L. Loday, Applications algébriques du tore dans la sphère et de $ S^p\times S^q$ dans $ S^{p+q}$, Lect. Notes in Math 342 (Springer, 1973). MR 0368034 (51:4276)
  • 11. Y. Ozan, On entire rational maps in real algebraic geometry, Michigan Math. J., 42 (1995) 141-145. MR 1322195 (96b:14070)
  • 12. Y. Ozan, On homology of real algebraic varieties, Proc. Amer. Math. Soc., 129 (2001) 3167-3175. MR 1844989 (2002m:14048)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 14P25, 14P05

Retrieve articles in all journals with MSC (2000): 14P25, 14P05

Additional Information

Ali Öztürk
Affiliation: Department of Mathematics, Abant İzzet Baysal University, 14280 Bolu, Turkey

Keywords: Real algebraic varieties, algebraic homology, regular morphisms
Received by editor(s): November 10, 2005
Received by editor(s) in revised form: March 2, 2008
Published electronically: September 15, 2008
Communicated by: Ted Chinburg
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society