Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)




Author: Tamás Mátrai
Journal: Proc. Amer. Math. Soc. 137 (2009), 1115-1125
MSC (2000): Primary 03E15; Secondary 54H05, 28A05
Published electronically: October 23, 2008
MathSciNet review: 2457453
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We construct a $ G_{\delta}$ $ \sigma$-ideal $ \mathcal{I}$ of compact subsets of $ 2^{\omega}$ such that $ \mathcal{I}$ contains all the singletons but there is no dense $ G_{\delta}$ set $ D \subseteq 2^{\omega}$ such that $ \{K \subseteq D \colon K\textrm{ compact}\} \subseteq \mathcal{I}$. This answers a question of A. S. Kechris in the negative.

References [Enhancements On Off] (What's this?)

  • 1. A. S. Kechris, Classical Descriptive Set Theory, Graduate Texts in Mathematics, 156 (Springer-Verlag, New York, 1995). MR 1321597 (96e:03057)
  • 2. A. S. Kechris, Hereditary properties of the class of closed sets of uniqueness for trigonometric series, Israel J. Math. 73 (1991), no. 2, 189-198. MR 1135211 (93c:42008)
  • 3. A. S. Kechris, The descriptive set theory of $ \sigma$-ideals of compact sets, Logic Colloq. '88 (Padova, 1988), 117-138, Stud. Logic Found. Math., 127, North-Holland, Amsterdam, 1989. MR 1015324 (90h:03032)
  • 4. A. S. Kechris, A. Louveau, W. H. Woodin, The structure of $ \sigma$-ideals of compact sets, Trans. Amer. Math. Soc. 301 (1987), no. 1, 263-288. MR 879573 (88f:03042)
  • 5. E. Matheron, M. Zelený, Descriptive set theory of families of small sets, Bull. Symb. Logic 13 (2007), no. 4, 482-537. MR 2369671
  • 6. S. Solecki, $ G_\delta$ Ideals of Compact Sets, preprint.
  • 7. C. E. Uzcátegui A., The covering property for $ \sigma$-ideals of compact sets, Fund. Math. 141 (1992), no. 2, 119-146. MR 1183328 (94a:03077)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 03E15, 54H05, 28A05

Retrieve articles in all journals with MSC (2000): 03E15, 54H05, 28A05

Additional Information

Tamás Mátrai
Affiliation: Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, Reáltanoda Street 13-15, H-1053 Budapest, Hungary
Address at time of publication: University of Toronto, 40 St. George Street, Toronto, Ontario, M5S 2E4, Canada

Keywords: $G_{\delta }$ $\sigma $-ideal of compact sets, singleton, ideal extension, covering property
Received by editor(s): November 14, 2007
Received by editor(s) in revised form: March 9, 2008, and April 14, 2008
Published electronically: October 23, 2008
Additional Notes: This research was partially supported by the OTKA grants F 43620, K 49786, K 61600 and by the József Öveges Program of the National Office for Research and Technology.
Communicated by: Julia Knight
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society