Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Inclusions and coincidences for multiple summing multilinear mappings


Authors: G. Botelho, H.-A. Braunss, H. Junek and D. Pellegrino
Journal: Proc. Amer. Math. Soc. 137 (2009), 991-1000
MSC (2000): Primary 46G25
DOI: https://doi.org/10.1090/S0002-9939-08-09691-3
Published electronically: October 8, 2008
MathSciNet review: 2457439
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Using complex interpolation we prove new inclusion and coincidence theorems for multiple (fully) summing multilinear and holomorphic mappings. Among several other results we show that continuous $ n$-linear forms on cotype 2 spaces are multiple $ (2;q_{k},...,q_{k})$-summing, where $ 2^{k-1}<n\leq2^{k}$, $ q_{0}=2$ and $ q_{k+1}=\frac{2q_{k}}{1+q_{k}}$ for $ k\geq0.$


References [Enhancements On Off] (What's this?)

  • 1. M. Acosta, D. Garcıa and M. Maestre, A multilinear Lindenstrauss theorem, J. Funct. Anal. 235 (2006), 122-136. MR 2216442 (2007b:46065)
  • 2. J. Bergh and J. Löfström, Interpolation spaces. An introduction, Springer-Verlag, Berlin-New York, 1976. MR 0482275 (58:2349)
  • 3. J. Bochnak and J. Siciak, Polynomials and multilinear mappings in topological vector spaces, Studia Math. 39 (1971), 59-76. MR 0313810 (47:2364)
  • 4. H. F. Bohnenblust and E. Hille, On the absolute convergence of Dirichlet series, Ann. of Math. (2) 32 (1931), 600-622. MR 1503020
  • 5. F. Bombal, D. Pérez-Garcıa and I. Villanueva, Multilinear extensions of Grothendieck's theorem, Quart. J. Math. 55 (2004), 441-450. MR 2104683 (2005i:47032)
  • 6. G. Botelho, Cotype and absolutely summing multilinear mappings and homogeneous polynomials, Proc. Roy. Irish Acad. Sect. A 97 (1997), 145-153. MR 1645283 (99i:46006)
  • 7. G. Botelho, H.-A. Braunss, H. Junek and D. Pellegrino, Holomorphy types and ideals of multilinear mappings, Studia Math. 177 (2006), 43-65. MR 2283707 (2008a:46046)
  • 8. G. Botelho and D. Pellegrino, Scalar-valued dominated polynomials on Banach spaces, Proc. Amer. Math. Soc. 134 (2006), 1743-1751. MR 2204287 (2006i:46063)
  • 9. A. Defant and C. Michels, A complex interpolation formula for tensor products of vector-valued Banach function spaces, Arch. Math. 74 (2000), 441-451. MR 1753543 (2001d:46103)
  • 10. A. Defant and D. Pérez-Garcıa, A tensor norm preserving unconditionality for $ \mathcal{L}_{p}$-spaces, Trans. Amer. Math. Soc. 360 (2008), 3287-3306. MR 2379797
  • 11. J. Diestel, H. Jarchow and A. Tonge, Absolutely summing operators, Cambridge University Press, 1995. MR 1342297 (96i:46001)
  • 12. V. Dimant, Strongly $ p$-summing multilinear operators, J. Math. Anal. Appl. 278 (2003), 182-193. MR 1963473 (2003m:47031)
  • 13. S. Geiss, Ein Faktorisierungssatz für multilineare Funktionale, Math. Nachr. 134 (1987), 149-159. MR 918674 (89b:47067)
  • 14. A. Grothendieck, Résumé de la théorie métrique des produits tensoriels topologiques, Boletim da Sociedade Matemática de São Paulo 8 (1953), 1-79. MR 0094682 (20:1194)
  • 15. H. Jarchow, C. Palazuelos, D. Pérez-Garcıa and I. Villanueva, Hahn-Banach extension of multilinear forms and summability, J. Math. Anal. Appl. 336 (2007), 1161-1177. MR 2353008
  • 16. H. Junek, M. C. Matos and D. Pellegrino, Inclusion theorems for absolutely summing holomorphic mappings, Proc. Amer. Math. Soc. 136 (2008), 3983-3991.
  • 17. O. Kouba, On the interpolation of injective or projective tensor products of Banach spaces, J. Funct. Anal. 96 (1991), 38-61. MR 1093506 (92e:46147)
  • 18. K. Lermer, The Grothendieck-Pietsch domination principle for nonlinear summing integral operators, Studia Math. 129 (1998), 97-112. MR 1608150 (99k:47178)
  • 19. J. Lindenstrauss and A. Pełczyński, Absolutely summing operators in $ \mathcal{L}_{p}$-spaces and their applications, Studia Math. 29 (1968), 275-326. MR 0231188 (37:6743)
  • 20. J. Lindenstrauss, L. Tzafriri, Classical Banach Spaces. I and II, Springer-Verlag, Berlin-New York, 1977, 1979. MR 0500056 (58:17766), MR 0540367 (81c:46001)
  • 21. M. C. Matos, Fully absolutely summing and Hilbert-Schmidt multilinear mappings, Collect. Math. 54 (2003), 111-136. MR 1995136 (2004e:46052)
  • 22. M. C. Matos and D. Pellegrino, Fully summing mappings between Banach spaces, Studia Math. 178 (2007), 47-61. MR 2282489 (2007j:46117)
  • 23. G. Muñoz, Y. Sarantopoulos and A. Tonge, Complexifications of real Banach spaces, polynomials and multilinear maps, Studia Math. 134 (1999), 1-33. MR 1688213 (2000g:46009)
  • 24. G. Muñoz, Complexifications of polynomials and multilinear maps on real Banach spaces, Lecture Notes in Pure and Appl. Math, 213, Marcel Dekker, 2000, 389-406. MR 1772140 (2001f:46070)
  • 25. L. Nachbin, Topology on spaces of holomorphic mappings, Springer-Verlag, New York, 1969. MR 0254579 (40:7787)
  • 26. D. Pellegrino, Cotype and absolutely summing homogeneous polynomials in $ L_{p}$ spaces, Studia Math. 157 (2003), 121-131. MR 1980709 (2004f:46019)
  • 27. D. Pellegrino and M. L. V. Souza, Fully summing multilinear and holomorphic mappings into Hilbert spaces, Math. Nachr. 278 (2005), 877-887. MR 2141964 (2005m:46072)
  • 28. D. Pérez-Garcıa, Operadores multilineales absolutamente sumantes, Doctoral Thesis, Universidad Complutense de Madrid, 2003.
  • 29. D. Pérez-Garcıa, The inclusion theorem for multiple summing operators, Studia Math. 165 (2004), 275-290. MR 2110152 (2005i:47107)
  • 30. D. Pérez-Garcıa and I. Villanueva, Multiple summing operators on Banach spaces, J. Math. Anal. Appl. 285 (2003), 86-96. MR 2000141 (2004m:47039)
  • 31. D. Pérez-Garcıa and I. Villanueva, Multiple summing operators on $ C(K)$ spaces, Ark. Mat. 42 (2004), 153-171. MR 2056549 (2005g:47003)
  • 32. A. Pietsch, Absolut $ p$-summierende Abbildungen in normierten Räumen, Studia Math. 28 (1966/1967), 333-353. MR 0216328 (35:7162)
  • 33. A. Pietsch, Ideals of multilinear functionals, Proceedings of the Second International Conference on Operator Algebras, Ideals and Their Applications in Theoretical Physics, 185-199, Teubner-Texte Math., vol 67, Teubner, Leipzig, 1983. MR 763541
  • 34. M. S. Ramanujan and E. Schock, Operator ideals and spaces of bilinear operators, Linear and Multilinear Algebra 18 (1985), 307-318. MR 826681 (87j:47062)
  • 35. M. L. V. Souza, Aplicações multilineares completamente absolutamente somantes, Doctoral Thesis, Unicamp, 2003.
  • 36. M. Talagrand, Cotype and $ (q,1)$-summing norm in a Banach space, Invent. Math. 110 (1992), 545-556. MR 1189490 (93k:46015)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 46G25

Retrieve articles in all journals with MSC (2000): 46G25


Additional Information

G. Botelho
Affiliation: Faculdade de Matemática, Universidade Federal de Uberlândia, 38.400-902, Uberlândia, Brazil
Email: botelho@ufu.br

H.-A. Braunss
Affiliation: Institute of Mathematics, University of Potsdam, 14469, Potsdam, Germany
Email: braunss@rz.uni-potsdam.de

H. Junek
Affiliation: Institute of Mathematics, University of Potsdam, 14469, Potsdam, Germany
Email: junek@rz.uni-potsdam.de

D. Pellegrino
Affiliation: Departamento de Matemática, Universidade Federal da Paraíba, 58051-900, J. Pessoa, PB, Brazil
Email: pellegrino.math@gmail.com

DOI: https://doi.org/10.1090/S0002-9939-08-09691-3
Received by editor(s): March 4, 2008
Published electronically: October 8, 2008
Additional Notes: The fourth author is supported by CNPq Grant 308084/2006-3 and Edital MCT/CNPq 02/2006-Universal, Grant 471054/2006-2
Communicated by: Nigel J. Kalton
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society