Group gradings on simple Lie algebras in positive characteristic

Authors:
Yuri Bahturin, Mikhail Kochetov and Susan Montgomery

Journal:
Proc. Amer. Math. Soc. **137** (2009), 1245-1254

MSC (2000):
Primary 16W10, 16W50, 17B50, 17B70

DOI:
https://doi.org/10.1090/S0002-9939-08-09634-2

Published electronically:
October 20, 2008

MathSciNet review:
2465646

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we describe all gradings by a finite abelian group on the following Lie algebras over an algebraically closed field of characteristic : ( not divisible by ), (, ) and (, even).

**1.**Bahturin, Y.; Goze, M.*-symmetric spaces*, Pacific J. Math.,**236**(2008), 1-21.**2.**Bahturin, Y.; Giambruno, A.*Group gradings on associative algebras with involution*, Canad. Math. Bull.,**51**(2008), 182-194.**3.**Bahturin, Y.; Shestakov, I.; Zaicev, M.*Gradings on simple Jordan and Lie algebras*, J. Algebra,**283**(2005), 849-868. MR**2111225 (2005i:17038)****4.**Bahturin, Y.; Zaicev, M.*Involutions on graded matrix algebras*, J. Algebra,**315**(2007), 527-540. MR**2351876****5.**Bahturin, Y.; Zaicev, M.*Graded algebras and graded identities*, Polynomial identities and combinatorial methods (Pantelleria, 2001), 101-139, Lecture Notes in Pure and Appl. Math.,**235**, Dekker, New York, 2003. MR**2021796 (2005a:16059)****6.**Bahturin, Y.; Zaicev, M.*Gradings on simple Lie algebras of type ``A''*, J. Lie Theory,**16**(2006), 719-742. MR**2270657 (2007i:17037)****7.**Beidar, K. I.; Brešar, M.; Chebotar, M. A.; Martindale, W. S., 3rd.*On Herstein's Lie map conjectures. III*, J. Algebra,**249**(2002), no. 1, 59-94. MR**1887985 (2003c:16042)****8.**Benkart, G.; Gregory, T.; Premet, A.*The recognition theorem for graded Lie algebras in prime characteristic*, arXiv:math.RA/0508373 v2 (29 Sep 2005).**9.**Blau, P. S.; Martindale, W. S., 3rd.*Lie isomorphisms in -prime GPI rings with involution*, Taiwanese J. Math.,**4**(2000), 215-252. MR**1757403 (2001i:16061)****10.**Dieudonné, J.*Introduction to the theory of formal groups*. Pure and Applied Mathematics,**20**, Marcel Dekker, Inc., New York, 1973. MR**0332802 (48:11128)****11.**Jantzen, J. C.*Representations of algebraic groups.*Second edition. Mathematical Surveys and Monographs,**107**, American Math. Soc., Providence, RI, 2003. MR**2015057 (2004h:20061)****12.**Kac, V.*Graded algebras and symmetric spaces*. Funct. Anal. Pril.,**2**(1968), 93-94. MR**0231944 (38:270)****13.**Kac, V.*Infinite dimensional Lie algebras*, second edition, Cambridge University Press, 1985. MR**823672 (87c:17023)****14.**Montgomery, S.*Hopf algebras and their actions on rings*, CBMS Regional Conference Series in Mathematics,**82**, American Math. Soc., Providence, RI, 1993. MR**1243637 (94i:16019)****15.**Zelmanov, E.*Lie algebras with a finite grading*. Engl. Transl., Math. USSR-Sb.,**52**(1985), 347-385. MR**0752226**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
16W10,
16W50,
17B50,
17B70

Retrieve articles in all journals with MSC (2000): 16W10, 16W50, 17B50, 17B70

Additional Information

**Yuri Bahturin**

Affiliation:
Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John’s, NL, A1C5S7, Canada

Email:
yuri@math.mun.ca

**Mikhail Kochetov**

Affiliation:
Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John’s, NL, A1C5S7, Canada

Email:
mikhail@math.mun.ca

**Susan Montgomery**

Affiliation:
Department of Mathematics, University of Southern California, 3620 South Vermont Avenue, KAP 108, Los Angeles, California 90089-2532

Email:
smontgom@math.usc.edu

DOI:
https://doi.org/10.1090/S0002-9939-08-09634-2

Received by editor(s):
July 5, 2007

Received by editor(s) in revised form:
February 8, 2008, and April 21, 2008

Published electronically:
October 20, 2008

Additional Notes:
The first author was partially supported by NSERC grant # 227060-04 and by a URP grant, Memorial University of Newfoundland.

The second author was supported by a Start-up Grant, Memorial University of Newfoundland.

The third author was supported by NSF grant DMS 0401399.

Communicated by:
Birge Huisgen-Zimmermann

Article copyright:
© Copyright 2008
American Mathematical Society