Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Congruence properties of Hermitian modular forms


Authors: Toshiyuki Kikuta and Shoyu Nagaoka
Journal: Proc. Amer. Math. Soc. 137 (2009), 1179-1184
MSC (2000): Primary 11F33; Secondary 11F55
DOI: https://doi.org/10.1090/S0002-9939-08-09646-9
Published electronically: September 25, 2008
MathSciNet review: 2465638
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study the existence of a modular form satisfying a certain congruence relation. The existence of such modular forms plays an important role in the determination of the structure of a ring of modular forms modulo $ p$. We give a criterion for the existence of such a modular form in the case of Hermitian modular forms.


References [Enhancements On Off] (What's this?)

  • 1. E. Bayer-Fluckiger, Definite unimodular lattices having an automorphism of given characteristic polynomial. Comment. Math. Helv. 59 (1984), 509-538. MR 780074 (86k:11032)
  • 2. S. Boecherer, S. Nagaoka, On mod $ p$ properties of Siegel modular forms. Math. Ann. 338 (2007), 421-433. MR 2302069 (2008d:11041)
  • 3. H. Braun, Hermitian modular functions. Ann. of Math. (2) 50 (1949), 827-855. MR 0032699 (11:333a)
  • 4. D. M. Cohen, H. L. Resnikoff, Hermitian quadratic forms and Hermitian modular forms. Pac. J. Math. 76 (1978), 329-337. MR 506135 (80b:10039)
  • 5. E. Freitag, Modulformen zweiten Grades zum rationalen und Gausschen Zahlkörper. Sitzungsber. Heidelberger Akad. Wiss. Math.-Natur. Kl. (1967), 3-49. MR 0214541 (35:5391)
  • 6. J-P. Serre, Formes modulaires et fonctions zêta $ p$-adiques. Modular Functions of One Variable III, Lecture Notes in Math. 350 (1973), 191-268, Springer. MR 0404145 (53:7949a)
  • 7. H. P. F. Swinnerton-Dyer, On $ \ell$-adic representations and congruences for coefficients of modular forms. Modular Functions of One Variable III, Lecture Notes in Math. 350 (1973), 1-55, Springer. MR 0406931 (53:10717a)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 11F33, 11F55

Retrieve articles in all journals with MSC (2000): 11F33, 11F55


Additional Information

Toshiyuki Kikuta
Affiliation: Department of Mathematics, Kinki University, Higashi-Osaka, Osaka 577-8502, Japan
Email: kikuta@math.kindai.ac.jp

Shoyu Nagaoka
Affiliation: Department of Mathematics, Kinki University, Higashi-Osaka, Osaka 577-8502, Japan
Email: nagaoka@math.kindai.ac.jp

DOI: https://doi.org/10.1090/S0002-9939-08-09646-9
Keywords: Congruences for modular and $ p$-adic modular forms
Received by editor(s): April 1, 2008
Published electronically: September 25, 2008
Additional Notes: The second author was supported in part by Grant-in-Aid for Scientific Research 19540061.
Dedicated: In celebration of Tomoyoshi Ibukiyama’s 60th birthday
Communicated by: Wen-Ching Winnie Li
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society