Producing set-theoretic complete intersection monomial curves in

Author:
Mesut Sahin

Journal:
Proc. Amer. Math. Soc. **137** (2009), 1223-1233

MSC (2000):
Primary 14M10; Secondary 14H45

Published electronically:
October 16, 2008

MathSciNet review:
2465643

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we describe an algorithm for producing infinitely many examples of set-theoretic complete intersection monomial curves in , starting with a single set-theoretic complete intersection monomial curve in . Moreover we investigate the numerical criteria to decide when these monomial curves can or cannot be obtained via semigroup gluing.

**1.**Feza Arslan and Pinar Mete,*Hilbert functions of Gorenstein monomial curves*, Proc. Amer. Math. Soc.**135**(2007), no. 7, 1993–2002 (electronic). MR**2299471**, 10.1090/S0002-9939-07-08793-X**2.**Margherita Barile, Marcel Morales, and Apostolos Thoma,*Set-theoretic complete intersections on binomials*, Proc. Amer. Math. Soc.**130**(2002), no. 7, 1893–1903 (electronic). MR**1896020**, 10.1090/S0002-9939-01-06289-X**3.**D. Bayer and M. Stillman,*Macaulay, a system for computations in algebraic geometry and commutative algebra*, 1992, available at`www.math.columbia.edu/~bayer/Macaulay`**4.**H. Bresinsky,*Monomial space curves in 𝐴³ as set-theoretic complete intersections*, Proc. Amer. Math. Soc.**75**(1979), no. 1, 23–24. MR**529205**, 10.1090/S0002-9939-1979-0529205-5**5.**David Eisenbud and E. Graham Evans Jr.,*Every algebraic set in 𝑛-space is the intersection of 𝑛 hypersurfaces*, Invent. Math.**19**(1973), 107–112. MR**0327783****6.**Kazufumi Eto,*Set-theoretic complete intersection lattice ideals in monoid rings*, J. Algebra**299**(2006), no. 2, 689–706. MR**2228334**, 10.1016/j.jalgebra.2005.06.016**7.**Anargyros Katsabekis,*Projections of cones and the arithmetical rank of toric varieties*, J. Pure Appl. Algebra**199**(2005), no. 1-3, 133–147. MR**2134297**, 10.1016/j.jpaa.2004.12.009**8.**T. T. Moh,*Set-theoretic complete intersections*, Proc. Amer. Math. Soc.**94**(1985), no. 2, 217–220. MR**784166**, 10.1090/S0002-9939-1985-0784166-1**9.**Marcel Morales,*Noetherian symbolic blow-ups*, J. Algebra**140**(1991), no. 1, 12–25. MR**1114901**, 10.1016/0021-8693(91)90141-T**10.**Marcel Morales and Apostolos Thoma,*Complete intersection lattice ideals*, J. Algebra**284**(2005), no. 2, 755–770. MR**2114578**, 10.1016/j.jalgebra.2004.10.011**11.**Lorenzo Robbiano and Giuseppe Valla,*On set-theoretic complete intersections in the projective space*, Rend. Sem. Mat. Fis. Milano**53**(1983), 333–346 (1986) (English, with Italian summary). MR**858508**, 10.1007/BF02924906**12.**Lorenzo Robbiano and Giuseppe Valla,*Some curves in 𝑃³ are set-theoretic complete intersections*, Algebraic geometry—open problems (Ravello, 1982) Lecture Notes in Math., vol. 997, Springer, Berlin-New York, 1983, pp. 391–399. MR**714759****13.**J. C. Rosales,*On presentations of subsemigroups of 𝑁ⁿ*, Semigroup Forum**55**(1997), no. 2, 152–159. MR**1457760**, 10.1007/PL00005916**14.**Apostolos Thoma,*On the set-theoretic complete intersection problem for monomial curves in 𝐀ⁿ and 𝐏ⁿ*, J. Pure Appl. Algebra**104**(1995), no. 3, 333–344. MR**1361579**, 10.1016/0022-4049(94)00135-9**15.**Apostolos Thoma,*Affine semigroup rings and monomial varieties*, Comm. Algebra**24**(1996), no. 7, 2463–2471. MR**1390384**, 10.1080/00927879608825710**16.**Apostolos Thoma,*Construction of set theoretic complete intersections via semigroup gluing*, Beiträge Algebra Geom.**41**(2000), no. 1, 195–198. MR**1745589**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
14M10,
14H45

Retrieve articles in all journals with MSC (2000): 14M10, 14H45

Additional Information

**Mesut Sahin**

Affiliation:
Department of Mathematics, Atılım University, 06836 Ankara, Turkey

Email:
mesut@atilim.edu.tr

DOI:
http://dx.doi.org/10.1090/S0002-9939-08-09653-6

Keywords:
Set-theoretic complete intersections,
monomial curves

Received by editor(s):
May 29, 2007

Received by editor(s) in revised form:
June 1, 2007, October 11, 2007, March 4, 2008, and April 15, 2008

Published electronically:
October 16, 2008

Communicated by:
Ted Chinburg

Article copyright:
© Copyright 2008
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.