Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Producing set-theoretic complete intersection monomial curves in $ \mathbb{P}^n$


Author: Mesut Sahin
Journal: Proc. Amer. Math. Soc. 137 (2009), 1223-1233
MSC (2000): Primary 14M10; Secondary 14H45
DOI: https://doi.org/10.1090/S0002-9939-08-09653-6
Published electronically: October 16, 2008
MathSciNet review: 2465643
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we describe an algorithm for producing infinitely many examples of set-theoretic complete intersection monomial curves in $ \mathbb{P}^{n+1}$, starting with a single set-theoretic complete intersection monomial curve in $ \mathbb{P}^{n}$. Moreover we investigate the numerical criteria to decide when these monomial curves can or cannot be obtained via semigroup gluing.


References [Enhancements On Off] (What's this?)

  • 1. F. Arslan, P. Mete, Hilbert functions of Gorenstein monomial curves, Proc. Amer. Math. Soc. 135 (2007) 1993-2002. MR 2299471 (2007m:13023)
  • 2. M. Barile, M. Morales, A. Thoma, Set-theoretic complete intersections on binomials, Proc. Amer. Math. Soc. 130 (2002) 1893-1903. MR 1896020 (2003f:14058)
  • 3. D. Bayer and M. Stillman, Macaulay, a system for computations in algebraic geometry and commutative algebra, 1992, available at www.math.columbia.edu/~bayer/Macaulay
  • 4. H. Bresinsky, Monomial space curves in $ \mathbb{A}^3$ as set-theoretic complete intersections, Proc. Amer. Math. Soc. 75 (1979) 23-24. MR 529205 (81g:14022)
  • 5. D. Eisenbud, E.G. Evans, Every algebraic set in n-space is the intersection of n hypersurfaces, Inventiones Math. 19 (1973) 107-112. MR 0327783 (48:6125)
  • 6. K. Eto, Set-theoretic complete intersection lattice ideals in monoid rings, Journal of Algebra 299 (2006) 689-706. MR 2228334 (2007a:13012)
  • 7. A. Katsabekis, Projection of cones and the arithmetical rank of toric varieties, Journal of Pure and Applied Algebra 199 (2005) 133-147. MR 2134297 (2005m:14094)
  • 8. T.T. Moh, Set-theoretic complete intersections, Proc. Amer. Math. Soc. 94 (1985) 217-220. MR 784166 (86e:14026)
  • 9. M. Morales, Noetherian symbolic blow-ups, Journal of Algebra 140 (1991) 12-25. MR 1114901 (92c:13020)
  • 10. M. Morales and A. Thoma, Complete intersection lattice ideals, Journal of Algebra 284 (2005) 755-770. MR 2114578 (2005j:20076)
  • 11. L. Robbiano, G. Valla, On set-theoretic complete intersections in the projective space, Rend. Sem. Mat. Fis. Milano LIII (1983) 333-346. MR 858508 (87k:14057)
  • 12. L. Robbiano, G. Valla, Some curves in $ \mathbb{P}^{3}$ are set-theoretic complete intersections, Algebraic geometry-open problems, Proceedings Ravello 1982, Lecture Notes in Mathematics, Vol. 997 (Springer, New York, 1983) 391-399. MR 714759 (84m:14059)
  • 13. J.C. Rosales, On presentations of subsemigroups of $ \mathbb{N}^n$, Semigroup Forum 55 (1997) 152-159. MR 1457760 (98h:20104)
  • 14. A. Thoma, On the set-theoretic complete intersection problem for monomial curves in $ \mathbb{A}^{n}$ and $ \mathbb{P}^{n}$, Journal of Pure and Applied Algebra 104 (1995) 333-344. MR 1361579 (96h:13031)
  • 15. A. Thoma, Affine semigroup rings and monomial varieties, Communications in Algebra 24(7) (1996) 2463-2471. MR 1390384 (97c:20096)
  • 16. A. Thoma, Construction of set-theoretic complete intersections via semigroup gluing, Contributions to Algebra and Geometry 41(1) (2000) 195-198. MR 1745589 (2001h:14059)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 14M10, 14H45

Retrieve articles in all journals with MSC (2000): 14M10, 14H45


Additional Information

Mesut Sahin
Affiliation: Department of Mathematics, Atılım University, 06836 Ankara, Turkey
Email: mesut@atilim.edu.tr

DOI: https://doi.org/10.1090/S0002-9939-08-09653-6
Keywords: Set-theoretic complete intersections, monomial curves
Received by editor(s): May 29, 2007
Received by editor(s) in revised form: June 1, 2007, October 11, 2007, March 4, 2008, and April 15, 2008
Published electronically: October 16, 2008
Communicated by: Ted Chinburg
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society