Producing set-theoretic complete intersection monomial curves in

Author:
Mesut Sahin

Journal:
Proc. Amer. Math. Soc. **137** (2009), 1223-1233

MSC (2000):
Primary 14M10; Secondary 14H45

DOI:
https://doi.org/10.1090/S0002-9939-08-09653-6

Published electronically:
October 16, 2008

MathSciNet review:
2465643

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we describe an algorithm for producing infinitely many examples of set-theoretic complete intersection monomial curves in , starting with a single set-theoretic complete intersection monomial curve in . Moreover we investigate the numerical criteria to decide when these monomial curves can or cannot be obtained via semigroup gluing.

**1.**F. Arslan, P. Mete,*Hilbert functions of Gorenstein monomial curves*, Proc. Amer. Math. Soc.**135**(2007) 1993-2002. MR**2299471 (2007m:13023)****2.**M. Barile, M. Morales, A. Thoma,*Set-theoretic complete intersections on binomials*, Proc. Amer. Math. Soc.**130**(2002) 1893-1903. MR**1896020 (2003f:14058)****3.**D. Bayer and M. Stillman,*Macaulay, a system for computations in algebraic geometry and commutative algebra*, 1992, available at`www.math.columbia.edu/~bayer/Macaulay`**4.**H. Bresinsky,*Monomial space curves in as set-theoretic complete intersections*, Proc. Amer. Math. Soc.**75**(1979) 23-24. MR**529205 (81g:14022)****5.**D. Eisenbud, E.G. Evans,*Every algebraic set in n-space is the intersection of n hypersurfaces*, Inventiones Math.**19**(1973) 107-112. MR**0327783 (48:6125)****6.**K. Eto,*Set-theoretic complete intersection lattice ideals in monoid rings*, Journal of Algebra**299**(2006) 689-706. MR**2228334 (2007a:13012)****7.**A. Katsabekis,*Projection of cones and the arithmetical rank of toric varieties*, Journal of Pure and Applied Algebra**199**(2005) 133-147. MR**2134297 (2005m:14094)****8.**T.T. Moh,*Set-theoretic complete intersections*, Proc. Amer. Math. Soc.**94**(1985) 217-220. MR**784166 (86e:14026)****9.**M. Morales,*Noetherian symbolic blow-ups*, Journal of Algebra**140**(1991) 12-25. MR**1114901 (92c:13020)****10.**M. Morales and A. Thoma,*Complete intersection lattice ideals*, Journal of Algebra**284**(2005) 755-770. MR**2114578 (2005j:20076)****11.**L. Robbiano, G. Valla,*On set-theoretic complete intersections in the projective space*, Rend. Sem. Mat. Fis. Milano LIII (1983) 333-346. MR**858508 (87k:14057)****12.**L. Robbiano, G. Valla,*Some curves in are set-theoretic complete intersections*, Algebraic geometry-open problems, Proceedings Ravello 1982, Lecture Notes in Mathematics, Vol.**997**(Springer, New York, 1983) 391-399. MR**714759 (84m:14059)****13.**J.C. Rosales,*On presentations of subsemigroups of*, Semigroup Forum**55**(1997) 152-159. MR**1457760 (98h:20104)****14.**A. Thoma,*On the set-theoretic complete intersection problem for monomial curves in and*, Journal of Pure and Applied Algebra**104**(1995) 333-344. MR**1361579 (96h:13031)****15.**A. Thoma,*Affine semigroup rings and monomial varieties*, Communications in Algebra**24(7)**(1996) 2463-2471. MR**1390384 (97c:20096)****16.**A. Thoma,*Construction of set-theoretic complete intersections via semigroup gluing*, Contributions to Algebra and Geometry**41(1)**(2000) 195-198. MR**1745589 (2001h:14059)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
14M10,
14H45

Retrieve articles in all journals with MSC (2000): 14M10, 14H45

Additional Information

**Mesut Sahin**

Affiliation:
Department of Mathematics, Atılım University, 06836 Ankara, Turkey

Email:
mesut@atilim.edu.tr

DOI:
https://doi.org/10.1090/S0002-9939-08-09653-6

Keywords:
Set-theoretic complete intersections,
monomial curves

Received by editor(s):
May 29, 2007

Received by editor(s) in revised form:
June 1, 2007, October 11, 2007, March 4, 2008, and April 15, 2008

Published electronically:
October 16, 2008

Communicated by:
Ted Chinburg

Article copyright:
© Copyright 2008
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.