Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A family of local rings with rational Poincaré series


Authors: Juan Elias and Giuseppe Valla
Journal: Proc. Amer. Math. Soc. 137 (2009), 1175-1178
MSC (2000): Primary 13D40; Secondary 13H10
DOI: https://doi.org/10.1090/S0002-9939-08-09736-0
Published electronically: November 4, 2008
MathSciNet review: 2465637
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this note we compute the Poincaré series of almost stretched Gorenstein local rings. It turns out that it is rational.


References [Enhancements On Off] (What's this?)

  • 1. S. S. Abhyankar, Local rings of high embedding dimension, Amer. J. Math. 89 (1967), 1073-1077. MR 0220723 (36:3775)
  • 2. D. J. Anick, A counterexample to a conjecture of Serre, Ann. of Math. (2) 115 (1982), no. 1, 1-33. MR 644015 (86i:55011a)
  • 3. L. Avramov, Infinite free resolutions,  Six lectures on commutative algebra (Bellaterra, 1996), Progr. Math., vol. 166, Birkhäuser, Basel, 1998, pp. 1-118. MR 1648664 (99m:13022)
  • 4. R. Bøgvad, Gorenstein rings with transcendental Poincaré-series, Math. Scand. 53 (1983), no. 1, 5-15. MR 733933 (85c:13012)
  • 5. J. Elias and G. Valla, Structure theorems for certain Gorenstein ideals, Michigan J. of Math. 57 (2008), 269-292.
  • 6. J. Elias and G. Valla, Isomorphism classes of certain complete intersections, in preparation (2008).
  • 7. T.H. Gulliksen and G. Levin, Homology of local rings, Queen's Papers in Pure and Applied Math., No. 20, Queen's University, Kingston, Ontario, 1969. MR 0262227 (41:6837)
  • 8. G. Levin and L. Avramov, Factoring out the socle of a Gorenstein ring, J. of Algebra 55 (1978), no. 1, 74-83. MR 515760 (80j:13015)
  • 9. M.E. Rossi and G. Valla, Stretched $ \frak{m}$-primary ideals, Beiträge zur Algebra und Geometrie 42 (2001), no. 1, 103-122. MR 1824753 (2002d:13023)
  • 10. J. Sally, The Poincaré series of stretched Cohen-Macaulay rings, Canad. J. Math 32 (1980), no. 5, 1261-1265. MR 596109 (82b:13011)
  • 11. J. Sally, Stretched Gorenstein rings, J. London Math. Soc. 20 (1979), no. 2, 19-26. MR 545198 (80k:14006)
  • 12. G. Scheja, Über die Bettizahlen lokaler Ringe, Math. Ann. 155 (1964), 155-172. MR 0162819 (29:123)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 13D40, 13H10

Retrieve articles in all journals with MSC (2000): 13D40, 13H10


Additional Information

Juan Elias
Affiliation: Departament d’Àlgebra i Geometria, Facultat de Matemàtiques, Universitat de Barcelona, Gran Via 585, 08007 Barcelona, Spain
Email: elias@ub.edu

Giuseppe Valla
Affiliation: Dipartimento di Matematica, Università di Genova, Via Dodecaneso 35, 16146 Genova, Italy
Email: valla@dima.unige.it

DOI: https://doi.org/10.1090/S0002-9939-08-09736-0
Received by editor(s): March 31, 2008
Published electronically: November 4, 2008
Additional Notes: The first author was partially supported by MEC-FEDER MTM2007-67493
The second author was partially supported by MIUR
Communicated by: Bernd Ulrich
Article copyright: © Copyright 2008 American Mathematical Society

American Mathematical Society