Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Totally free arrangements of hyperplanes


Authors: Takuro Abe, Hiroaki Terao and Masahiko Yoshinaga
Journal: Proc. Amer. Math. Soc. 137 (2009), 1405-1410
MSC (2000): Primary 32S22
DOI: https://doi.org/10.1090/S0002-9939-08-09755-4
Published electronically: November 5, 2008
MathSciNet review: 2465666
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A central arrangement $ \mathcal{A}$ of hyperplanes in an $ \ell$-dimensional vector space $ V$ is said to be totally free if a multiarrangement $ (\mathcal{A}, m)$ is free for any multiplicity $ m : \mathcal{A}\rightarrow \Z_{> 0}$. It has been known that $ \mathcal{A}$ is totally free whenever $ \ell \le 2$. In this article, we will prove that there does not exist any totally free arrangement other than the obvious ones, that is, a product of one-dimensional arrangements and two-dimensional ones.


References [Enhancements On Off] (What's this?)

  • 1. T. Abe, Free and non-free multiplicity on the deleted $ A_3$ arrangement. Proc. Japan Acad. Ser. A 83 (2007), no. 7, 99-103. MR 2361419
  • 2. T. Abe, K. Nuida and Y. Numata, Bicolor-eliminable graphs and free multiplicities on the braid arrangement. arXiv:0712.4110.
  • 3. T. Abe, H. Terao and M. Wakefield, The characteristic polynomial of a multiarrangement. Adv. in Math. 215 (2007), 825-838. MR 2355609
  • 4. T. Abe, H. Terao and M. Wakefield, The Euler multiplicity and addition-deletion theorems for multiarrangements. J. London Math. Soc. 77 (2008), no. 2, 335-348. MR 2400395
  • 5. T. Abe and M. Yoshinaga, Coxeter multiarrangements with quasi-constant multiplicities. arXiv:0708.3228.
  • 6. P. Orlik and H. Terao, Arrangements of hyperplanes. Grundlehren der Mathematischen Wissenschaften, 300. Springer-Verlag, Berlin, 1992. MR 1217488 (94e:52014)
  • 7. J. G. Oxley, Matroid Theory. Oxford University Press, New York, 1992. MR 1207587 (94d:05033)
  • 8. W. T. Tutte, Lectures on matroids. J. Res. Nat. Bur. Standards Sect. B 69B (1965), 1-47. MR 0179781 (31:4023)
  • 9. M. Yoshinaga, Characterization of a free arrangement and conjecture of Edelman and Reiner. Invent. Math. 157 (2004), no. 2, 449-454. MR 2077250 (2005d:52044)
  • 10. M. Yoshinaga, On the freeness of 3-arrangements. Bull. London. Math. Soc. 37 (2005), no. 1, 126-134. MR 2105827 (2005i:52030)
  • 11. M. Yoshinaga, On the extendability of free multiarrangements. arXiv:0710.5044.
  • 12. G. M. Ziegler, Multiarrangements of hyperplanes and their freeness. Singularities (Iowa City, IA, 1986), 345-359, Contemp. Math., 90, Amer. Math. Soc., Providence, RI, 1989. MR 1000610 (90e:32015)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 32S22

Retrieve articles in all journals with MSC (2000): 32S22


Additional Information

Takuro Abe
Affiliation: Department of Mathematics, Hokkaido University, Kita-10, Nishi-8, Kita-Ku, Sapporo, 060-0810, Japan
Address at time of publication: Department of Mathematics, Kyoto University, Kitashirakawa-Oiwake-Cho, Sakyo-Ku, Kyoto, 606-8502, Japan
Email: abetaku@math.kyoto-u.ac.jp

Hiroaki Terao
Affiliation: Department of Mathematics, Hokkaido University, Kita-10, Nishi-8, Kita-Ku, Sapporo, 060-0810, Japan
Email: terao@math.sci.hokudai.ac.jp

Masahiko Yoshinaga
Affiliation: Department of Mathematics, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501, Japan
Email: myoshina@math.kobe-u.ac.jp

DOI: https://doi.org/10.1090/S0002-9939-08-09755-4
Received by editor(s): May 16, 2008
Published electronically: November 5, 2008
Communicated by: Martin Lorenz
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society