Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the linearity of torsion-free nilpotent groups of finite Morley rank


Authors: Tuna Altinel and John S. Wilson
Journal: Proc. Amer. Math. Soc. 137 (2009), 1813-1821
MSC (2000): Primary 03C60, 20F16
DOI: https://doi.org/10.1090/S0002-9939-08-09695-0
Published electronically: December 15, 2008
MathSciNet review: 2470842
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is proved that every torsion-free nilpotent group of finite Morley rank is isomorphic to a matrix group over a field of characteristic zero.


References [Enhancements On Off] (What's this?)

  • 1. I. D. Ado. The representation of Lie algebras by matrices. Uspehi Mat. Nauk. (N.S.) 2 (1947), no. 6 (22), 159-173. (A.M.S Transl. No. 2 (1949)) MR 0027753 (10:350c)
  • 2. A. Baudisch. A new uncountably categorical group. Trans. Amer. Math. Soc. 348 (1996), 3889-3940. MR 1351488 (96m:03020)
  • 3. A. V. Borovik and A. Nesin. Groups of Finite Morley Rank. Oxford University Press, 1994. MR 1321141 (96c:20004)
  • 4. G. Cherlin and J. Reineke.
    Categoricity and stability of commutative rings.
    Ann. Math. Logic 10 (1976), 367-399. MR 0480007 (58:208)
  • 5. I. S. Cohen. On the structure and ideal theory of complete local rings. Trans. Amer. Math. Soc. 59 (1946), 54-106. MR 0016094 (7:509h)
  • 6. O. Frécon. Linearity of solvable groups of finite Morley rank. Preprint, 2007.
  • 7. W. Hodges. Model Theory. Encyclopedia of Mathematics and its Applications 42. Cambridge University Press, 1993. MR 1221741 (94e:03002)
  • 8. N. Jacobson. Lie Algebras. Dover Publications, 1962. MR 0143793 (26:1345)
  • 9. N. Jacobson. Basic Algebra II. W. H. Freeman and Company, 1989. MR 1009787 (90m:00007)
  • 10. A. Macintyre. On $ \omega_1$-categorical theories of fields. Fund. Math. 71 (1971), 1-25. MR 0290954 (45:48)
  • 11. A. Nesin. Non-associative rings of finite Morley rank. In The Model Theory of Groups, edited by A. Nesin and A. Pillay, Notre Dame Mathematical Lectures 11, Notre Dame Press, 1989, 117-137. MR 985343
  • 12. I. Stewart. An algebraic treatment of Malcev's theorem concerning nilpotent Lie groups and their Lie algebras. Compositio Math. 22 (1970), 289-312. MR 0288158 (44:5356)
  • 13. R. B. Warfield Jr. Nilpotent Groups. Lecture Notes in Math. 513. Springer-Verlag, 1976. MR 0409661 (53:13413)
  • 14. B. I. Zil'ber. Rings with $ \aleph_1$-categorical theories. Algebra and Logic 13 (1974), 95-104. (Translation from Algebra i Logika 13, No. 2 (1974), 168-187.) MR 0366650 (51:2897)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 03C60, 20F16

Retrieve articles in all journals with MSC (2000): 03C60, 20F16


Additional Information

Tuna Altinel
Affiliation: Université de Lyon, Université Lyon 1, CNRS UMR 5208 Institut Camille Jordan, INSA de Lyon, F-69621, Ecole Centrale de Lyon, 43 blvd du 11 novembre 1918, 69622 Villeurbanne cedex, France
Email: altinel@math.univ-lyon1.fr

John S. Wilson
Affiliation: University College, Oxford OX1 4BH, United Kingdom
Email: wilsonjs@maths.ox.ac.uk

DOI: https://doi.org/10.1090/S0002-9939-08-09695-0
Received by editor(s): March 3, 2008
Received by editor(s) in revised form: July 9, 2008
Published electronically: December 15, 2008
Additional Notes: The first author was supported by MODNET, an FP6 Marie Curie Research Training Network in Model Theory and its Applications, funded by the European Commission under contract number MRTN-CT-2004-512234 (MODNET)
Communicated by: Julia Knight
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society