Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On some permutation polynomials over $ \mathbb{F}_q$ of the form $ x^r h(x^{(q-1)/d})$


Author: Michael E. Zieve
Journal: Proc. Amer. Math. Soc. 137 (2009), 2209-2216
MSC (2000): Primary 11T06
DOI: https://doi.org/10.1090/S0002-9939-08-09767-0
Published electronically: December 22, 2008
MathSciNet review: 2495253
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Several recent papers have given criteria for certain polynomials to permute $ \mathbb{F}_q$, in terms of the periods of certain generalized Lucas sequences. We show that these results follow from a more general criterion which does not involve such sequences.


References [Enhancements On Off] (What's this?)

  • 1. A. Akbary, S. Alaric and Q. Wang, On some classes of permutation polynomials, Int. J. Number Theory 4 (2008), 121-133. MR 2387920
  • 2. A. Akbary and Q. Wang, On some permutation polynomials over finite fields, Int. J. Math. Math. Sci. (2005), 2631-2640. MR 2184755 (2006g:11237)
  • 3. -, A generalized Lucas sequence and permutation binomials, Proc. Amer. Math. Soc. 134 (2006), 15-22. MR 2170538 (2006d:11147)
  • 4. -, On polynomials of the form $ x^r f(x^{(q-1)/l})$, Int. J. Math. Math. Sci. (2007), Article ID 23408, 7 pages. MR 2375446 (2008j:11180)
  • 5. E. Betti, Sopra la risolubilità per radicali delle equazioni algebriche irriduttibili di grado primo, Annali di Scienze Matematiche e Fisiche 2 (1851), 5-19 (=Opere Matematiche, v. 1, 17-27).
  • 6. F. Brioschi, Des substitutions de la forme $ \Theta(r)\equiv \varepsilon (r^{n-2}+ar^{(n-3)/2})$ pour un nombre $ n$ premier de lettres, Math. Ann. 2 (1870), 467-470 (=Opere Matematiche, v. 5, 193-197). MR 1509672
  • 7. L. Carlitz, Some theorems on permutation polynomials, Bull. Amer. Math. Soc. 68 (1962), 120-122. MR 0141655 (25:5052)
  • 8. W. Chu and S. W. Golomb, Circular Tuscan-$ k$ arrays from permutation binomials, J. Comb. Theory A 97 (2002), 195-202. MR 1879136 (2003e:05026)
  • 9. S. D. Cohen, The distribution of polynomials over finite fields, Acta Arith. 17 (1970), 255-271. MR 0277501 (43:3234)
  • 10. S. D. Cohen and R. W. Matthews, A class of exceptional polynomials, Trans. Amer. Math. Soc. 345 (1994), 897-909. MR 1272675 (95d:11164)
  • 11. C. J. Colbourn, T. Klove and A. C. H. Ling, Permutation arrays for powerline communication and mutually orthogonal Latin squares, IEEE Trans. Inf. Theory 50 (2004), 1289-1291. MR 2094885 (2005e:94316)
  • 12. H. Davenport and D. J. Lewis, Notes on congruences. I, Quart. J. Math. Oxford Ser. (2) 14 (1963), 51-60. MR 0146131 (26:3657)
  • 13. L. E. Dickson, The analytic representation of substitutions on a power of a prime number of letters with a discussion of the linear group, Annals Math. 11 (1896-7), 65-120 and 161-183. MR 1502214
  • 14. J. F. Dillon and H. Dobbertin, New cyclic difference sets with Singer parameters, Finite Fields Appl. 10 (2004), 342-389. MR 2067603 (2005f:05024)
  • 15. M. D. Fried, R. M. Guralnick and J. Saxl, Schur covers and Carlitz's conjecture, Israel J. Math. 82 (1993), 157-225. MR 1239049 (94j:12007)
  • 16. R. M. Guralnick and P. Müller, Exceptional polynomials of affine type, J. Algebra 194 (1997), 429-454. MR 1467161 (98i:12006)
  • 17. R. M. Guralnick, P. Müller and M. E. Zieve, Exceptional polynomials of affine type, revisited, preprint.
  • 18. R. M. Guralnick, J. Rosenberg and M. E. Zieve, A new family of exceptional polynomials in characteristic two, Ann. of Math. (2), to appear.
  • 19. R. M. Guralnick and M. E. Zieve, Automorphism groups of curves with ordinary Jacobians, in preparation.
  • 20. Ch. Hermite, Sur les fonctions de sept lettres, C. R. Acad. Sci. Paris 57 (1863), 750-757.
  • 21. S. Y. Kim and J. B. Lee, Permutation polynomials of the type $ x\sp {1+((q-1)/m)}+ax$, Commun. Korean Math. Soc. 10 (1995), 823-829. MR 1430660 (97k:11167)
  • 22. Y. Laigle-Chapuy, Permutation polynomials and applications to coding theory, Finite Fields Appl. 13 (2007), 58-70. MR 2284666 (2008c:94027)
  • 23. H. W. Lenstra, Jr., and M. E. Zieve, A family of exceptional polynomials in characteristic three, Finite Fields and Applications (Glasgow, 1995), London Math. Soc. Lecture Notes Ser., 233, Cambridge Univ. Press, 1996, 209-218. MR 1433150 (98a:11174)
  • 24. A. M. Masuda and M. E. Zieve, Permutation binomials over finite fields, Trans. Amer. Math. Soc., to appear.
  • 25. É. Mathieu, Mémoire sur l'etud des fonctions de plusieurs quantités, sur la manière de les former et sur les substitutions qui les laissent invariables, Jour. de Math. Pure Appl. 6 (1861), 241-323.
  • 26. P. Müller, New examples of exceptional polynomials, Finite Fields: Theory, Applications, and Algorithms (Las Vegas, NV, 1993), Contemp. Math., 168, Amer. Math. Soc., 1994, 245-249. MR 1291433 (95h:11136)
  • 27. H. Niederreiter and K. H. Robinson, Complete mappings of finite fields, J. Austral. Math. Soc. (Series A) 33 (1982), 197-212. MR 668442 (83j:12015)
  • 28. Y. H. Park and J. B. Lee, Permutation polynomials and group permutation polynomials, Bull. Austral. Math. Soc. 63 (2001), 67-74. MR 1812309 (2002d:11143)
  • 29. C. Small, Permutation binomials, Internat. J. Math. Math. Sci. 13 (1990), 337-342. MR 1052532 (91g:11148)
  • 30. J. Sun, O. Y. Takeshita and M. P. Fitz, Permutation polynomial based deterministic interleavers for turbo codes, Proceedings 2003 IEEE International Symposium on Information Theory (Yokohama, Japan, 2003), 319.
  • 31. G. Turnwald, Permutation polynomials of binomial type, Contributions to General Algebra 6 (1988), 281-286. MR 1078048 (92e:11141)
  • 32. D. Wan, Permutation binomials over finite fields, Acta Math. Sinica (New Series) 10 (1994), 30-35. MR 1268257 (94m:11145)
  • 33. D. Wan and R. Lidl, Permutation polynomials of the form $ x^rf(x^{(q-1)/d})$ and their group structure, Monatsh. Math. 112 (1991), 149-163. MR 1126814 (92g:11119)
  • 34. L. Wang, On permutation polynomials, Finite Fields Appl. 8 (2002), 311-322. MR 1910394 (2003e:11135)
  • 35. M. E. Zieve, Some families of permutation polynomials over finite fields, Int. J. Number Theory 4 (2008), 851-857.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 11T06

Retrieve articles in all journals with MSC (2000): 11T06


Additional Information

Michael E. Zieve
Affiliation: Department of Mathematics, Hill Center, Rutgers University, 110 Frelinghuysen Road, Piscataway, New Jersey 08854
Email: zieve@math.rutgers.edu

DOI: https://doi.org/10.1090/S0002-9939-08-09767-0
Keywords: Permutation polynomial, finite field, binomial, Lucas sequence
Received by editor(s): September 16, 2008
Published electronically: December 22, 2008
Communicated by: Wen-Ching Winnie Li
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society