Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The size of isoperimetric surfaces in $ 3$-manifolds and a rigidity result for the upper hemisphere


Author: Michael Eichmair
Journal: Proc. Amer. Math. Soc. 137 (2009), 2733-2740
MSC (2000): Primary 53C20
DOI: https://doi.org/10.1090/S0002-9939-09-09789-5
Published electronically: April 3, 2009
MathSciNet review: 2497486
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We characterize the standard $ \mathbb{S}^3$ as the closed Ricci-positive $ 3$-manifold with scalar curvature at least $ 6$ having isoperimetric surfaces of largest area: $ 4\pi$. As a corollary we answer in the affirmative an interesting special case of a conjecture of M. Min-Oo's on the scalar curvature rigidity of the upper hemisphere.


References [Enhancements On Off] (What's this?)

  • 1. Lars Andersson, Mingliang Cai, and Gregory J. Galloway, Rigidity and positivity of mass for asymptotically hyperbolic manifolds, Ann. Henri Poincaré 9 (2008), no. 1, 1–33. MR 2389888, https://doi.org/10.1007/s00023-007-0348-2
  • 2. C. Bavard, P. Pansu: ``Sur le volume minimal de $ \mathbb{R}^2$,'' Ann. Sci. École Norm. Sup. (4) 19 (1986), 479-490. MR 0875084 (88b:53048)
  • 3. H. L. Bray: ``The Penrose inequality in general relativity and volume comparison theorems involving scalar curvature,'' thesis, Stanford University (1997). arXiv:0902.3241
  • 4. D. Christodoulou, S.-T. Yau: ``Some remarks on the quasi-local mass,'' Contemporary Mathematics, Volume 71, Amer. Math. Soc. (1988), 9-14. MR 0954405 (89k:83050)
  • 5. Piotr T. Chruściel and Marc Herzlich, The mass of asymptotically hyperbolic Riemannian manifolds, Pacific J. Math. 212 (2003), no. 2, 231–264. MR 2038048, https://doi.org/10.2140/pjm.2003.212.231
  • 6. Justin Corvino, Scalar curvature deformation and a gluing construction for the Einstein constraint equations, Comm. Math. Phys. 214 (2000), no. 1, 137–189. MR 1794269, https://doi.org/10.1007/PL00005533
  • 7. A. Gray, L. Vanhecke: ``Riemannian geometry as determined by the volumes of small geodesic balls,'' Acta. Math. 142 (1979), 157-198. MR 0521460 (81i:53038)
  • 8. Fengbo Hang and Xiaodong Wang, Rigidity and non-rigidity results on the sphere, Comm. Anal. Geom. 14 (2006), no. 1, 91–106. MR 2230571
  • 9. F. Hang, X. Wang: ``A rigidity theorem for the hemisphere,'' preprint (2007). arXiv:0711.4595v2
  • 10. G. Huisken: ``An isoperimetric concept for mass and quasilocal mass,'' Oberwolfach Rep. 3, No. 1 (2006), 87-88.
  • 11. Pengzi Miao, Positive mass theorem on manifolds admitting corners along a hypersurface, Adv. Theor. Math. Phys. 6 (2002), no. 6, 1163–1182 (2003). MR 1982695, https://doi.org/10.4310/ATMP.2002.v6.n6.a4
  • 12. Maung Min-Oo, Scalar curvature rigidity of asymptotically hyperbolic spin manifolds, Math. Ann. 285 (1989), no. 4, 527–539. MR 1027758, https://doi.org/10.1007/BF01452046
  • 13. Maung Min-Oo, Scalar curvature rigidity of certain symmetric spaces, Geometry, topology, and dynamics (Montreal, PQ, 1995) CRM Proc. Lecture Notes, vol. 15, Amer. Math. Soc., Providence, RI, 1998, pp. 127–136. MR 1619128
  • 14. Antonio Ros, The isoperimetric problem, Global theory of minimal surfaces, Clay Math. Proc., vol. 2, Amer. Math. Soc., Providence, RI, 2005, pp. 175–209. MR 2167260
  • 15. R. Schoen and S.-T. Yau, Lectures on differential geometry, Conference Proceedings and Lecture Notes in Geometry and Topology, I, International Press, Cambridge, MA, 1994. Lecture notes prepared by Wei Yue Ding, Kung Ching Chang [Gong Qing Zhang], Jia Qing Zhong and Yi Chao Xu; Translated from the Chinese by Ding and S. Y. Cheng; Preface translated from the Chinese by Kaising Tso. MR 1333601
  • 16. R. Schoen, S.-T. Yau: ``Positivity of the total mass of a general space-time,'' Phys. Rev. Lett. 43 (1979), 1457-1459. MR 0547753 (81c:58024)
  • 17. Yuguang Shi and Luen-Fai Tam, Positive mass theorem and the boundary behaviors of compact manifolds with nonnegative scalar curvature, J. Differential Geom. 62 (2002), no. 1, 79–125. MR 1987378
  • 18. Xiaodong Wang, The mass of asymptotically hyperbolic manifolds, J. Differential Geom. 57 (2001), no. 2, 273–299. MR 1879228
  • 19. E. Witten: ``A new proof of the positive energy theorem,'' Comm. Math. Phys. 80 (1981), 381-402. MR 0626707 (83e:83035)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 53C20

Retrieve articles in all journals with MSC (2000): 53C20


Additional Information

Michael Eichmair
Affiliation: Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307
Email: eichmair@math.mit.edu

DOI: https://doi.org/10.1090/S0002-9939-09-09789-5
Received by editor(s): December 3, 2007
Received by editor(s) in revised form: September 17, 2008
Published electronically: April 3, 2009
Communicated by: Richard A. Wentworth
Article copyright: © Copyright 2009 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society