Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Proper products


Author: Otmar Spinas
Journal: Proc. Amer. Math. Soc. 137 (2009), 2767-2772
MSC (2000): Primary 03E05
DOI: https://doi.org/10.1090/S0002-9939-09-09846-3
Published electronically: March 5, 2009
MathSciNet review: 2497491
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that the natural amoeba forcing associated with Laver forcing $ \mathbb{L}$, Miller forcing $ \mathbb{M}$ respectively, is proper. As a corollary we obtain that every finite power of $ \mathbb{L}$, respectively $ \mathbb{M}$, is proper.


References [Enhancements On Off] (What's this?)

  • 1. J. E. Baumgartner, Iterated forcing, surveys in set theory, London Mathematical Society Lecture Note Series, no. 87 (A.R.D. Mathias, ed.), Cambridge University Press, Cambridge, 1983, pp. 1-59. MR 823775 (87c:03099)
  • 2. J. Brendle, Mutual generics and perfect free subsets, Acta Math. Hungar. 82 (1999), pp. 143-161. MR 1658566 (2000g:03117)
  • 3. R. Laver, On the consistency of Borel's conjecture, Acta Math. 137 (1976), pp. 151-169. MR 0422027 (54:10019)
  • 4. A. Miller, Rational perfect set forcing, Contemporary Mathematics, 31, Amer. Math. Soc., Providence, RI, 1984, pp. 143-159. MR 763899 (86f:03084)
  • 5. S. Shelah, Proper forcing, Lecture Notes in Mathematics, vol. 940, Springer-Verlag, Berlin-New York, 1982. MR 675955 (84h:03002)
  • 6. S. Shelah and O. Spinas, The distributivity numbers of finite products of $ \mathcal{P}(\omega)/{fin}$, Fundamenta Mathematicae 158 (1998), pp. 81-93. MR 1641157 (2000b:03170)
  • 7. O. Spinas, Generic trees, Journal of Symbolic Logic 60 (1995), pp. 705-726. MR 1348990 (96g:03087)
  • 8. O. Spinas, Ramsey and freeness properties of Polish planes, Proceedings of the London Mathematical Society (3) 82 (2001), no. 1, pp. 31-63. MR 1794256 (2001j:03088)
  • 9. B. Velickovic and H. Woodin, Complexity of reals in inner models of set theory, Ann. Pure Appl. Logic 92 (1998), pp. 283-295. MR 1640916 (99f:03067)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 03E05

Retrieve articles in all journals with MSC (2000): 03E05


Additional Information

Otmar Spinas
Affiliation: Mathematisches Seminar der Christian-Albrechts-Universität zu Kiel, Ludewig- Meyn-Straße 4, 24098 Kiel, Germany
Email: spinas@math.uni-kiel.de

DOI: https://doi.org/10.1090/S0002-9939-09-09846-3
Received by editor(s): December 10, 2007
Received by editor(s) in revised form: March 28, 2008, and December 5, 2008
Published electronically: March 5, 2009
Additional Notes: The author is partially supported by DFG grant SP 683/1-2
Communicated by: Julia Knight
Article copyright: © Copyright 2009 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society