Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Jacobson's theorem for bilinear forms in characteristic 2


Author: Ahmed Laghribi
Journal: Proc. Amer. Math. Soc. 137 (2009), 2905-2912
MSC (2000): Primary 11E04; Secondary 11E81
DOI: https://doi.org/10.1090/S0002-9939-09-09861-X
Published electronically: March 18, 2009
MathSciNet review: 2506448
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The aim of this paper is to extend to bilinear forms in characteristic $ 2$ a result of Jacobson which states that over any field, two Albert quadratic forms are similar if and only if they have the same Clifford invariant.


References [Enhancements On Off] (What's this?)

  • 1. R. Baeza,
    Quadratic forms over semilocal rings, Lect. Notes Math., vol. 655, Berlin, Heidelberg, New York: Springer, 1978. MR 0491773 (58:10972)
  • 2. D. W. Hoffmann, A. Laghribi,
    Quadratic forms and Pfister neighbors in characteristic $ 2$, Trans. Amer. Math. Soc. 356 (2004) 4019-4053. MR 2058517 (2005e:11041)
  • 3. N. Jacobson,
    Some applications of Jordan norms to involutorial simple associative algebras, Adv. in Math. 48 (1983) 149-165. MR 700981 (84m:16014)
  • 4. K. Kato,
    Symmetric bilinear forms, quadratic forms and Milnor K-theory in characteristic $ 2$, Inventiones Math. 66 (1982) 493-510. MR 662605 (83i:10027)
  • 5. A. Laghribi,
    Witt kernels of function field extensions in characteristic $ 2$, J. Pure Appl. Algebra 199 (2005) 167-182. MR 2134299 (2006c:11041)
  • 6. A. Laghribi,
    Sur le déploiement des formes bilinéaires en caractéristiques $ 2$, Pacific J. Math. 232 (2007), 207-232. MR 2358037 (2008j:11041)
  • 7. P. Mammone, D. B. Shapiro,
    The Albert quadratic form for an algebra of degree four, Proc. Amer. Math. Soc. 105 (1989) 525-530. MR 931742 (89g:16029)
  • 8. A. S. Merkurjev, The norm residue symbol of degree $ 2$ (in Russian), Dokl. Akad. Nauk SSSR 261 (1981) 542-547. English translation: Soviet Math. Doklady 24 (1981) 546-551. MR 638926 (83h:12015)
  • 9. J. Milnor, D. Husemoller,
    Symmetric bilinear forms, New York, Heidelberg: Springer, 1973. MR 0506372 (58:22129)
  • 10. C.-H. Sah,
    Symmetric bilinear forms and quadratic forms, J. Algebra 20 (1972) 144-160. MR 0294378 (45:3448)
  • 11. A. Vishik,
    On the dimensions of quadratic forms, Dokl. Akad. Nauk 373 (2000) 445-447. MR 1788358 (2001h:11042)
  • 12. A. Wadsworth,
    Similarity of quadratic forms and isomorphism of their function fields, Trans. Amer. Math. Soc. 208 (1975) 352-358. MR 0376527 (51:12702)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 11E04, 11E81

Retrieve articles in all journals with MSC (2000): 11E04, 11E81


Additional Information

Ahmed Laghribi
Affiliation: Laboratoire de Mathématiques de Lens EA 2462, Faculté des Sciences Jean Perrin, rue Jean Souvraz - SP18, F-62307 Lens, France
Email: laghribi@euler.univ-artois.fr

DOI: https://doi.org/10.1090/S0002-9939-09-09861-X
Keywords: Bilinear forms, totally singular quadratic forms, norm field, norm degree, differential forms.
Received by editor(s): June 27, 2007
Received by editor(s) in revised form: December 13, 2008
Published electronically: March 18, 2009
Communicated by: Bernd Ulrich
Article copyright: © Copyright 2009 American Mathematical Society

American Mathematical Society