Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Asymptotics for a gradient system with memory term

Author: Alexandre Cabot
Journal: Proc. Amer. Math. Soc. 137 (2009), 3013-3024
MSC (2000): Primary 34G20, 34A12, 34D05
Published electronically: May 4, 2009
MathSciNet review: 2506460
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Given a Hilbert space $ H$ and a function $ \Phi:H\to\mathbb{R}$ of class $ \mathcal{C}^1$, we investigate the asymptotic behavior of the trajectories associated to the following dynamical system:

$\displaystyle (\mathcal{S})\qquad\qquad\qquad\dot x(t) +\frac{1}{k(t)} \int_{t_0}^t h(s) \nabla \Phi(x(s)) ds=0, \qquad t\geq t_0,\qquad\qquad\quad$

where $ h$, $ k: [t_0,+\infty)\to \mathbb{R}_+^*$ are continuous maps. When $ k(t) \sim \int_{t_0}^t h(s) ds$ as $ t\to +\infty$, this equation can be interpreted as an averaged gradient system. We define a natural energy function $ E$ associated to system $ (\mathcal{S})$ and we give conditions which ensure that $ E(t)$ decreases to $ \inf \Phi$ as $ t\to +\infty$. When $ \Phi$ is convex and has a set of non-isolated minima, we show that the trajectories of $ (\mathcal{S})$ cannot converge if the average process does not ``privilege'' the recent past. Special attention is devoted to the particular case $ h(t)=t^\alpha$, $ k(t)=t^\beta$, which is fully treated.

References [Enhancements On Off] (What's this?)

  • 1. M. Abramowitz, I. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, New York, 1972. MR 0167642 (29:4914)
  • 2. F. Alvarez, On the minimizing property of a second order dissipative system in Hilbert spaces, SIAM J. on Control and Optimization, 38 (2000), no. 4, 1102-1119. MR 1760062 (2001e:34118)
  • 3. H. Attouch, X. Goudou, P. Redont, The heavy ball with friction method. I. The continuous dynamical system, Communications in Contemporary Mathematics, 2 (2000), no. 1, 1-34. MR 1753136 (2001b:37025)
  • 4. F. Bowman, Introduction to Bessel Functions. Dover, New York, 1958. MR 0097539 (20:4007)
  • 5. H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, Lecture Notes 5, North Holland, 1973. MR 0348562 (50:1060)
  • 6. R.E. Bruck, Asymptotic convergence of nonlinear contraction semigroups in Hilbert space, Journal of Functional Analysis, 18 (1975), 15-26. MR 0377609 (51:13780)
  • 7. A. Cabot, H. Engler, S. Gadat, On the long time behavior of second order differential equations with asymptotically small dissipation, accepted in Trans. of the Amer. Math. Soc.
  • 8. A. Cabot, H. Engler, S. Gadat, Second order differential equations with asymptotically small dissipation and piecewise flat potentials, Seventh Mississippi State-UAB Conference on Differential Equations and Computational Simulations. Electronic Journal of Differential Equations, Conference 17 (2009), 33-38.
  • 9. A. Cabot, P. Frankel, Asymptotics for some proximal-like method involving inertia and memory aspects, 14 pages, submitted.
  • 10. J. K. Hale, Asymptotic behavior of dissipative systems. Mathematical Surveys and Monographs, 25. American Mathematical Society, Providence, RI, 1988. MR 941371 (89g:58059)
  • 11. A. Haraux, Systèmes dynamiques dissipatifs et applications. RMA 17, Masson, Paris, 1991. MR 1084372 (92b:35002)
  • 12. A. Haraux, M. A. Jendoubi, Convergence of solutions of second-order gradient-like systems with analytic nonlinearities, J. Differential Equations, 144 (1998), no. 2, 313-320. MR 1616968 (99a:35182)
  • 13. S. Lojasiewicz, Ensembles semi-analytiques réels, notes I.H.E.S., 1965.
  • 14. R.T. Rockafellar, Convex Analysis. Princeton Univ. Press, Princeton, NJ, 1970. MR 0274683 (43:445)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 34G20, 34A12, 34D05

Retrieve articles in all journals with MSC (2000): 34G20, 34A12, 34D05

Additional Information

Alexandre Cabot
Affiliation: Département de Mathématiques, Université Montpellier II, CC 051, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France

Keywords: Differential equation, dissipative dynamical system, averaged gradient system, memory effect, Bessel equation
Received by editor(s): October 22, 2008
Published electronically: May 4, 2009
Communicated by: Walter Craig
Article copyright: © Copyright 2009 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society