Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

Asymptotics for a gradient system with memory term


Author: Alexandre Cabot
Journal: Proc. Amer. Math. Soc. 137 (2009), 3013-3024
MSC (2000): Primary 34G20, 34A12, 34D05
Published electronically: May 4, 2009
MathSciNet review: 2506460
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Given a Hilbert space $ H$ and a function $ \Phi:H\to\mathbb{R}$ of class $ \mathcal{C}^1$, we investigate the asymptotic behavior of the trajectories associated to the following dynamical system:

$\displaystyle (\mathcal{S})\qquad\qquad\qquad\dot x(t) +\frac{1}{k(t)} \int_{t_0}^t h(s) \nabla \Phi(x(s)) ds=0, \qquad t\geq t_0,\qquad\qquad\quad$

where $ h$, $ k: [t_0,+\infty)\to \mathbb{R}_+^*$ are continuous maps. When $ k(t) \sim \int_{t_0}^t h(s) ds$ as $ t\to +\infty$, this equation can be interpreted as an averaged gradient system. We define a natural energy function $ E$ associated to system $ (\mathcal{S})$ and we give conditions which ensure that $ E(t)$ decreases to $ \inf \Phi$ as $ t\to +\infty$. When $ \Phi$ is convex and has a set of non-isolated minima, we show that the trajectories of $ (\mathcal{S})$ cannot converge if the average process does not ``privilege'' the recent past. Special attention is devoted to the particular case $ h(t)=t^\alpha$, $ k(t)=t^\beta$, which is fully treated.


References [Enhancements On Off] (What's this?)

  • 1. Milton Abramowitz and Irene A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, National Bureau of Standards Applied Mathematics Series, vol. 55, For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C., 1964. MR 0167642 (29 #4914)
  • 2. Felipe Alvarez, On the minimizing property of a second order dissipative system in Hilbert spaces, SIAM J. Control Optim. 38 (2000), no. 4, 1102–1119 (electronic). MR 1760062 (2001e:34118), http://dx.doi.org/10.1137/S0363012998335802
  • 3. H. Attouch, X. Goudou, and P. Redont, The heavy ball with friction method. I. The continuous dynamical system: global exploration of the local minima of a real-valued function by asymptotic analysis of a dissipative dynamical system, Commun. Contemp. Math. 2 (2000), no. 1, 1–34. MR 1753136 (2001b:37025), http://dx.doi.org/10.1142/S0219199700000025
  • 4. Frank Bowman, Introduction to Bessel functions, Dover Publications Inc., New York, 1958. MR 0097539 (20 #4007)
  • 5. H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1973 (French). North-Holland Mathematics Studies, No. 5. Notas de Matemática (50). MR 0348562 (50 #1060)
  • 6. Ronald E. Bruck Jr., Asymptotic convergence of nonlinear contraction semigroups in Hilbert space, J. Funct. Anal. 18 (1975), 15–26. MR 0377609 (51 #13780)
  • 7. A. Cabot, H. Engler, S. Gadat, On the long time behavior of second order differential equations with asymptotically small dissipation, accepted in Trans. of the Amer. Math. Soc. http://arxiv.org/abs/0710.1107
  • 8. A. Cabot, H. Engler, S. Gadat, Second order differential equations with asymptotically small dissipation and piecewise flat potentials, Seventh Mississippi State-UAB Conference on Differential Equations and Computational Simulations. Electronic Journal of Differential Equations, Conference 17 (2009), 33-38.
  • 9. A. Cabot, P. Frankel, Asymptotics for some proximal-like method involving inertia and memory aspects, 14 pages, submitted.
  • 10. Jack K. Hale, Asymptotic behavior of dissipative systems, Mathematical Surveys and Monographs, vol. 25, American Mathematical Society, Providence, RI, 1988. MR 941371 (89g:58059)
  • 11. Alain Haraux, Systèmes dynamiques dissipatifs et applications, Recherches en Mathématiques Appliquées [Research in Applied Mathematics], vol. 17, Masson, Paris, 1991 (French). MR 1084372 (92b:35002)
  • 12. A. Haraux and M. A. Jendoubi, Convergence of solutions of second-order gradient-like systems with analytic nonlinearities, J. Differential Equations 144 (1998), no. 2, 313–320. MR 1616968 (99a:35182), http://dx.doi.org/10.1006/jdeq.1997.3393
  • 13. S. Lojasiewicz, Ensembles semi-analytiques réels, notes I.H.E.S., 1965.
  • 14. R. Tyrrell Rockafellar, Convex analysis, Princeton Mathematical Series, No. 28, Princeton University Press, Princeton, N.J., 1970. MR 0274683 (43 #445)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 34G20, 34A12, 34D05

Retrieve articles in all journals with MSC (2000): 34G20, 34A12, 34D05


Additional Information

Alexandre Cabot
Affiliation: Département de Mathématiques, Université Montpellier II, CC 051, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
Email: acabot@math.univ-montp2.fr

DOI: http://dx.doi.org/10.1090/S0002-9939-09-09910-9
PII: S 0002-9939(09)09910-9
Keywords: Differential equation, dissipative dynamical system, averaged gradient system, memory effect, Bessel equation
Received by editor(s): October 22, 2008
Published electronically: May 4, 2009
Communicated by: Walter Craig
Article copyright: © Copyright 2009 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.