Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Complete bounded holomorphic curves immersed in $ \mathbb{C}^2$ with arbitrary genus

Authors: Francisco Martin, Masaaki Umehara and Kotaro Yamada
Journal: Proc. Amer. Math. Soc. 137 (2009), 3437-3450
MSC (2000): Primary 53A10, 32H02; Secondary 53C42, 53C50
Published electronically: June 1, 2009
MathSciNet review: 2515413
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Recently, a complete holomorphic immersion of the unit disk $ \mathbb{D}$ into $ \mathbb{C}^2$ whose image is bounded was constructed by the authors. In this paper, we shall prove the existence of complete holomorphic null immersions of Riemann surfaces with arbitrary genus and finite topology whose image is bounded in $ \mathbb{C}^2$.

As an analogue to the above construction, we also give a new method to construct complete bounded minimal immersions (resp. weakly complete maximal surfaces) with arbitrary genus and finite topology in Euclidean 3-space (resp. Lorentz-Minkowski 3-spacetime).

References [Enhancements On Off] (What's this?)

  • [A] A. Alarcon, On the Calabi-Yau problem for maximal surfaces in $ \mathbb{L}^3$, Differential Geom. Appl., 26 (2008), no. 6, 625-634. MR 2474424
  • [AFM] A. Alarcon, L. Ferrer and F. Martın, Density theorems for complete minimal surfaces in $ \mathbb{R}^3$, Geom. Funct. Anal., 18 (2008), 1-49. MR 2399094
  • [F] H. M. Farkas and I. Kra, Riemann surfaces (2nd edition), Springer-Verlag (1992). MR 1139765 (93a:30047)
  • [FMM] L. Ferrer, F. Martın and W. H. Meeks III, Existence of proper minimal surfaces of arbitrary topological type, preprint, arXiv:0903.4194, 2008.
  • [JX] L. P. M. Jorge and F. Xavier, A complete minimal surface in $ \mathbb{R}^3$ between two parallel planes, Ann. Math., 112 (1980), 203-206. MR 584079 (82e:53087)
  • [L] F. J. López, Hyperbolic complete minimal surfaces with arbitrary topology, Trans. Amer. Math. Soc., 350 (1998), no. 5, 1977-1990. MR 1422904 (98h:53013)
  • [LMM1] F. J. López, F. Martın, and S. Morales, Adding handles to Nadirashvili's surfaces, J. Differential Geom., 60 (2002), no. 1, 155-175. MR 1924594 (2003f:53013)
  • [LMM2] F. J. López, F. Martın, and S. Morales, Complete nonorientable minimal surfaces in a ball, Trans. Amer. Math. Soc., 358 (2006), no. 9, 3807-3820. MR 2219000 (2007a:53014)
  • [MUY] F. Martın, M. Umehara and K. Yamada, Complete bounded null curves immersed in $ \mathbb{C}^3$ and $ \operatorname{SL}(2,\mathbb{C})$, preprint, arXiv:math/0603530. To appear in Calculus of Variations and Partial Differential Equations, DOI:10.1007/s00526-009-0226-5.
  • [M] P. F. X. Müller, Bounded plateau and Weierstrass martingale with infinite variation in each direction, Acta Math. Univ. Comenianae, 68 (2) (1999), 325-335. MR 1757799 (2001i:30038)
  • [N] N. Nadirashvili, Hadamard's and Calabi-Yau's conjectures on negatively curved and minimal surfaces, Invent. Math., 126 (1996), 457-465. MR 1419004 (98d:53014)
  • [UY3] M. Umehara and K. Yamada, Maximal surfaces with singularities in Minkowski space, Hokkaido Math. J., 35 (2006), 13-40. MR 2225080 (2007a:53018)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 53A10, 32H02, 53C42, 53C50

Retrieve articles in all journals with MSC (2000): 53A10, 32H02, 53C42, 53C50

Additional Information

Francisco Martin
Affiliation: Departamento de Geometría y Topología, Universidad de Granada, 18071 Granada, Spain

Masaaki Umehara
Affiliation: Department of Mathematics, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan

Kotaro Yamada
Affiliation: Faculty of Mathematics, Kyushu University, Fukuoka 812-8581, Japan

Received by editor(s): October 26, 2008
Published electronically: June 1, 2009
Communicated by: Richard A. Wentworth
Article copyright: © Copyright 2009 American Mathematical Society

American Mathematical Society