Complete bounded holomorphic curves immersed in with arbitrary genus

Authors:
Francisco Martin, Masaaki Umehara and Kotaro Yamada

Journal:
Proc. Amer. Math. Soc. **137** (2009), 3437-3450

MSC (2000):
Primary 53A10, 32H02; Secondary 53C42, 53C50

Published electronically:
June 1, 2009

MathSciNet review:
2515413

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Recently, a complete holomorphic immersion of the unit disk into whose image is bounded was constructed by the authors. In this paper, we shall prove the existence of complete holomorphic null immersions of Riemann surfaces with arbitrary genus and finite topology whose image is bounded in .

As an analogue to the above construction, we also give a new method to construct complete bounded minimal immersions (resp. weakly complete maximal surfaces) with arbitrary genus and finite topology in Euclidean 3-space (resp. Lorentz-Minkowski 3-spacetime).

**[A]**Antonio Alarcón,*On the Calabi-Yau problem for maximal surfaces in 𝕃³*, Differential Geom. Appl.**26**(2008), no. 6, 625–634. MR**2474424**, 10.1016/j.difgeo.2008.04.019**[AFM]**Antonio Alarcón, Leonor Ferrer, and Francisco Martín,*Density theorems for complete minimal surfaces in ℝ³*, Geom. Funct. Anal.**18**(2008), no. 1, 1–49. MR**2399094**, 10.1007/s00039-008-0650-2**[F]**H. M. Farkas and I. Kra,*Riemann surfaces*, 2nd ed., Graduate Texts in Mathematics, vol. 71, Springer-Verlag, New York, 1992. MR**1139765****[FMM]**L. Ferrer, F. Martın and W. H. Meeks III,*Existence of proper minimal surfaces of arbitrary topological type*, preprint, arXiv:0903.4194, 2008.**[JX]**Luquésio P. de M. Jorge and Frederico Xavier,*A complete minimal surface in 𝑅³ between two parallel planes*, Ann. of Math. (2)**112**(1980), no. 1, 203–206. MR**584079**, 10.2307/1971325**[L]**F. J. López,*Hyperbolic complete minimal surfaces with arbitrary topology*, Trans. Amer. Math. Soc.**350**(1998), no. 5, 1977–1990. MR**1422904**, 10.1090/S0002-9947-98-01932-1**[LMM1]**F. J. López, F. Martín, and S. Morales,*Adding handles to Nadirashvili’s surfaces*, J. Differential Geom.**60**(2002), no. 1, 155–175. MR**1924594****[LMM2]**F. J. López, Francisco Martin, and Santiago Morales,*Complete nonorientable minimal surfaces in a ball of ℝ³*, Trans. Amer. Math. Soc.**358**(2006), no. 9, 3807–3820 (electronic). MR**2219000**, 10.1090/S0002-9947-06-04004-9**[MUY]**F. Martın, M. Umehara and K. Yamada,*Complete bounded null curves immersed in and*, preprint, arXiv:math/0603530. To appear in Calculus of Variations and Partial Differential Equations, DOI:10.1007/s00526-009-0226-5.**[M]**P. F. X. Müller,*Bounded Plateau and Weierstrass martingales with infinite variation in each direction*, Acta Math. Univ. Comenian. (N.S.)**68**(1999), no. 2, 325–335. MR**1757799****[N]**Nikolai Nadirashvili,*Hadamard’s and Calabi-Yau’s conjectures on negatively curved and minimal surfaces*, Invent. Math.**126**(1996), no. 3, 457–465. MR**1419004**, 10.1007/s002220050106**[UY3]**Masaaki Umehara and Kotaro Yamada,*Maximal surfaces with singularities in Minkowski space*, Hokkaido Math. J.**35**(2006), no. 1, 13–40. MR**2225080**, 10.14492/hokmj/1285766302

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
53A10,
32H02,
53C42,
53C50

Retrieve articles in all journals with MSC (2000): 53A10, 32H02, 53C42, 53C50

Additional Information

**Francisco Martin**

Affiliation:
Departamento de Geometría y Topología, Universidad de Granada, 18071 Granada, Spain

Email:
fmartin@ugr.es

**Masaaki Umehara**

Affiliation:
Department of Mathematics, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan

Email:
umehara@math.sci.osaka-u.ac.jp

**Kotaro Yamada**

Affiliation:
Faculty of Mathematics, Kyushu University, Fukuoka 812-8581, Japan

Email:
kotaro@math.kyushu-u.ac.jp

DOI:
https://doi.org/10.1090/S0002-9939-09-09953-5

Received by editor(s):
October 26, 2008

Published electronically:
June 1, 2009

Communicated by:
Richard A. Wentworth

Article copyright:
© Copyright 2009
American Mathematical Society