Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



A note on a result of M. Grossi

Author: Florin Catrina
Journal: Proc. Amer. Math. Soc. 137 (2009), 3717-3724
MSC (2000): Primary 35J25, 35J70
Published electronically: June 12, 2009
MathSciNet review: 2529879
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The purpose of this note is to present a fact complementary to a result in a recent paper of M. Grossi. Making use of an energy balance identity, it is shown that the sufficient conditions for existence of solutions proved in Grossi's paper are also almost necessary.

References [Enhancements On Off] (What's this?)

  • 1. H. Brezis, Elliptic equations with limiting Sobolev exponents--the impact of topology, Comm. Pure Appl. Math., 39 (1986) S17-S39. MR 861481 (87k:58272)
  • 2. H. Brezis, L. Dupaigne and A. Tesei, On a semilinear elliptic equation with inverse-square potential, Selecta Math., 11 (2005) 1-7. MR 2179651 (2006g:35052)
  • 3. H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponent, Comm. Pure Appl. Math., 36 (1983) 437-477. MR 709644 (84h:35059)
  • 4. H. Brezis and L. A. Peletier, Elliptic equations with critical exponent on $ S\sp{3}$: New non-minimising solutions, C. R. Math. Acad. Sci. Paris, 339 (2004) 391-394. MR 2092750 (2005f:35090)
  • 5. F. Catrina and R. Lavine, Radial solutions for weighted semilinear equations, Commun. Contemp. Math., 4 (2002) 529-545. MR 1918758 (2003e:35080)
  • 6. K.-S. Chou and D. Geng, On the critical dimension of a semilinear degenerate elliptic equation involving critical Sobolev-Hardy exponent, Nonlinear Anal. TMA, 12 (1996) 1965-1984. MR 1386127 (97b:35079)
  • 7. Ph. Clement, D. G. de Figueiredo and E. Mitidieri, Quasilinear elliptic equations with critical exponents, Topol. Methods Nonlinear Anal., 7 (1996) 133-170. MR 1422009 (97k:35072)
  • 8. J. Dávila, M. del Pino, M. Musso and J. Wei, Fast and slow decay solutions for supercritical elliptic problems in exterior domains, Calc. Var. Partial Differential Equations, 32 (2008), no. 4, 453-480. MR 2402919 (2009b:35140)
  • 9. O. Druet, Elliptic equations with critical Sobolev exponents in dimension $ 3$. Ann. Inst. H. Poincaré Anal. Non Linéaire, 19 (2002), no. 2, 125-142. MR 1902741 (2003f:35104)
  • 10. H. Egnell, Semilinear elliptic equations involving critical Sobolev exponents, Arch. Rational Mech. Anal., 104 (1988) 27-56. MR 956566 (90e:35068)
  • 11. H. Egnell, Existence and nonexistence results for $ m$-Laplace equations involving critical Sobolev exponents, Arch. Rational Mech. Anal., 104 (1988) 57-77. MR 956567 (90e:35069)
  • 12. P. L. Felmer and A. Quaas, Positive radial solutions to a `semilinear' equation involving the Pucci's operator, J. Diff. Eqns., 199 (2004) 376-393. MR 2047915 (2004m:34040)
  • 13. N. Ghoussoub and C. Yuan, Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents, Trans. Amer. Math. Soc., 352 (2000) 5703-5743. MR 1695021 (2001b:35109)
  • 14. B. Gidas, W. M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys., 68 (1979) 209-243. MR 544879 (80h:35043)
  • 15. M. Grossi, Radial solutions for the Brezis-Nirenberg problem involving large nonlinearities, J. Funct. Anal., 254 (2008), no. 12, 2995-3036. MR 2418617 (2009c:35126)
  • 16. J. Jacobsen, Global bifurcation problems associated with k-Hessian operators, Topol. Methods Nonlinear Anal., 14 (1999) 81-130. MR 1758881 (2001f:35126)
  • 17. D. Passaseo, Some sufficient conditions for the existence of positive solutions to the equation $ -\Delta u+a(x)u=u\sp{2\sp{*}-1}$ in bounded domains, Ann. Inst. H. Poincaré Anal. Non Linéaire, 13 (1996), no. 2, 185-227. MR 1378466 (97i:35055)
  • 18. S. I. Pohozaev, On the eigenfunctions of the equation $ \Delta u+\lambda f(u)=0$, (Russian) Dokl. Akad. Nauk SSSR, 165 (1965) 36-39. MR 0192184 (33:411)
  • 19. P. Pucci and J. Serrin, Critical exponents and critical dimensions for polyharmonic operators, J. Math. Pures Appl., 69 (1990) 55-83. MR 1054124 (91i:35065)
  • 20. O. Rey, The role of the Green's function in a nonlinear elliptic equation involving the critical Sobolev exponent, J. Funct. Anal., 89 (1) (1990) 1-52. MR 1040954 (91b:35012)
  • 21. R. Schoen, Conformal deformation of a Riemannian metric to constant scalar curvature, J. Differential Geom., 20 (1984) 479-495. MR 788292 (86i:58137)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 35J25, 35J70

Retrieve articles in all journals with MSC (2000): 35J25, 35J70

Additional Information

Florin Catrina
Affiliation: Department of Mathematics and Computer Science, St. John’s University, Queens, New York 11439

Keywords: Green's function, positive solutions, supercritical exponent
Received by editor(s): December 22, 2008
Published electronically: June 12, 2009
Additional Notes: The author is grateful to the anonymous referee for useful comments and suggestions
Communicated by: Matthew J. Gursky
Article copyright: © Copyright 2009 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society