Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Generalized Bunce-Deddens algebras


Author: Stefanos Orfanos
Journal: Proc. Amer. Math. Soc. 138 (2010), 299-308
MSC (2000): Primary 47A66, 47L65
DOI: https://doi.org/10.1090/S0002-9939-09-10071-0
Published electronically: August 31, 2009
MathSciNet review: 2550195
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We define a broad class of crossed product C*-algebras of the form $ C(\tilde{G})\rtimes G$, where $ G$ is a discrete countable amenable residually finite group, and $ \tilde{G}$ is a profinite completion of $ G$. We show that they are unital separable simple nuclear quasidiagonal C*-algebras, of real rank zero, stable rank one, with comparability of projections and with a unique trace.


References [Enhancements On Off] (What's this?)

  • 1. Brown, L., Pedersen, G., $ C^*$-algebras of real rank zero, J. Funct. Anal., 160 (1) (1998) 150-175. MR 1120918 (92m:46086)
  • 2. Brown, N., Ozawa, N., $ C^*$-algebras and finite dimensional approximations, Graduate Studies in Mathematics, vol. 88, American Mathematical Society (2008). MR 2391387 (2009h:46101)
  • 3. Deninger, C., Schmidt, K., Expansive algebraic actions of discrete residually finite amenable groups and their entropy, Ergodic Thy. Dynam. Systems 27 (3) (2007) 769-786. MR 2322178 (2008d:37009)
  • 4. Giordano, T., Putnam, I., Skau, C., Affable equivalence relations and orbit structure of Cantor dynamical systems, Ergodic Thy. Dynam. Systems 24 (2) (2004) 441-475. MR 2054051 (2005d:37017)
  • 5. Kribs, D., Inductive limit algebras from periodic weighted shifts on Fock space, New York J. Math. 8 (2002) 145-159. MR 1934386 (2004b:46073)
  • 6. Orfanos, S., Quasidiagonality of crossed products, Journal of Operator Theory, to appear.
  • 7. Phillips, N. C., Crossed products of the Cantor set by free minimal actions of $ \mathbb{Z}^d$, Comm. Math. Phys. 256 (1) (2005) 1-42. MR 2134336 (2006g:46107)
  • 8. Pier, J-P., Amenable locally compact groups, John Wiley & Sons Inc. (1984). MR 767264 (86a:43001)
  • 9. Renault, J., A groupoid approach to $ C^*$-algebras, Lecture Notes in Mathematics, vol. 793, Springer (1980). MR 584266 (82h:46075)
  • 10. Rieffel, M., Dimension and stable rank in the $ K$-theory of $ C^*$-algebras, Proc. London Math. Soc. (3) 46(2) (1983) 301-333. MR 693043 (84g:46085)
  • 11. Weiss, B., Monotileable amenable groups, Amer. Math. Soc. Transl. Ser. 2, vol. 202, American Mathematical Society (2001) 257-262. MR 1819193 (2001m:22014)
  • 12. Williams, D., Crossed products of $ C*$-algebras, Math. Surveys and Monographs, vol. 134, American Mathematical Society (2007). MR 2288954 (2007m:46003)
  • 13. Wilson, J., Profinite groups, London Math. Society Monographs, New Series, vol. 19, The Clarendon Press, Oxford University Press (1998).MR 1691054 (2000j:20048)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 47A66, 47L65

Retrieve articles in all journals with MSC (2000): 47A66, 47L65


Additional Information

Stefanos Orfanos
Affiliation: Department of Mathematical Sciences, University of Cincinnati, Cincinnati, Ohio 45221
Email: stefanos.orfanos@uc.edu

DOI: https://doi.org/10.1090/S0002-9939-09-10071-0
Keywords: Bunce--Deddens algebras, profinite completion, amenable groups, almost AF groupoids.
Received by editor(s): November 30, 2008
Received by editor(s) in revised form: June 7, 2009
Published electronically: August 31, 2009
Communicated by: Marius Junge
Article copyright: © Copyright 2009 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society