Using Aleksandrov reflection to estimate the location of the center of expansion

Authors:
Yu-Chu Lin and Dong-Ho Tsai

Journal:
Proc. Amer. Math. Soc. **138** (2010), 557-565

MSC (2000):
Primary 35K15, 35K55

Published electronically:
September 30, 2009

MathSciNet review:
2557173

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We use the Aleksandrov reflection result of Chow and Gulliver to show that the *center of expansion* in expanding a given convex embedded closed curve lies on a certain convex plane region interior to

**[A]**Ben Andrews,*Evolving convex curves*, Calc. Var. Partial Differential Equations**7**(1998), no. 4, 315–371. MR**1660843**, 10.1007/s005260050111**[ANG]**Sigurd Angenent,*The zero set of a solution of a parabolic equation*, J. Reine Angew. Math.**390**(1988), 79–96. MR**953678**, 10.1515/crll.1988.390.79**[C]**Bennett Chow,*Geometric aspects of Aleksandrov reflection and gradient estimates for parabolic equations*, Comm. Anal. Geom.**5**(1997), no. 2, 389–409. MR**1483984**, 10.4310/CAG.1997.v5.n2.a5**[CG]**Bennett Chow and Robert Gulliver,*Aleksandrov reflection and nonlinear evolution equations. I. The 𝑛-sphere and 𝑛-ball*, Calc. Var. Partial Differential Equations**4**(1996), no. 3, 249–264. MR**1386736**, 10.1007/BF01254346**[CJ]**Richard Courant and Fritz John,*Introduction to calculus and analysis. Vol. II*, Springer-Verlag, New York, 1989. With the assistance of Albert A. Blank and Alan Solomon; Reprint of the 1974 edition. MR**1016380****[CLT]**Bennett Chow, Lii-Perng Liou, and Dong-Ho Tsai,*Expansion of embedded curves with turning angle greater than -𝜋*, Invent. Math.**123**(1996), no. 3, 415–429. MR**1383955**, 10.1007/s002220050034**[CT]**Bennett Chow and Dong-Ho Tsai,*Geometric expansion of convex plane curves*, J. Differential Geom.**44**(1996), no. 2, 312–330. MR**1425578****[GH]**M. Gage and R. S. Hamilton,*The heat equation shrinking convex plane curves*, J. Differential Geom.**23**(1986), no. 1, 69–96. MR**840401****[M]**Hiroshi Matano,*Nonincrease of the lap-number of a solution for a one-dimensional semilinear parabolic equation*, J. Fac. Sci. Univ. Tokyo Sect. IA Math.**29**(1982), no. 2, 401–441. MR**672070****[S]**Rolf Schneider,*Convex bodies: the Brunn-Minkowski theory*, Encyclopedia of Mathematics and its Applications, vol. 44, Cambridge University Press, Cambridge, 1993. MR**1216521****[T1]**Dong-Ho Tsai,*Geometric expansion of starshaped plane curves*, Comm. Anal. Geom.**4**(1996), no. 3, 459–480. MR**1415752**, 10.4310/CAG.1996.v4.n3.a5**[T2]**Dong-Ho Tsai,*Asymptotic closeness to limiting shapes for expanding embedded plane curves*, Invent. Math.**162**(2005), no. 3, 473–492. MR**2198219**, 10.1007/s00222-005-0449-9**[T3]**Dong-Ho Tsai,*Behavior of the gradient for solutions of parabolic equations on the circle*, Calc. Var. Partial Differential Equations**23**(2005), no. 3, 251–270. MR**2142063**, 10.1007/s00526-004-0298-1**[U]**John I. E. Urbas,*An expansion of convex hypersurfaces*, J. Differential Geom.**33**(1991), no. 1, 91–125. MR**1085136**

John I. E. Urbas,*Correction to: “An expansion of convex hypersurfaces” [J. Differential Geom. 33 (1991), no. 1, 91–125; MR1085136 (91j:58155)]*, J. Differential Geom.**35**(1992), no. 3, 763–765. MR**1163459****[Y]**Hiroki Yagisita,*Asymptotic behaviors of star-shaped curves expanding by 𝑉=1-𝐾*, Differential Integral Equations**18**(2005), no. 2, 225–232. MR**2106103**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
35K15,
35K55

Retrieve articles in all journals with MSC (2000): 35K15, 35K55

Additional Information

**Yu-Chu Lin**

Affiliation:
Department of Mathematics, National Tsing Hua University, Hsinchu 30013, Taiwan

Email:
yclin@math.nthu.edu.tw

**Dong-Ho Tsai**

Affiliation:
Department of Mathematics, National Tsing Hua University, Hsinchu 30013, Taiwan

Email:
dhtsai@math.nthu.edu.tw

DOI:
http://dx.doi.org/10.1090/S0002-9939-09-10155-7

Received by editor(s):
August 4, 2008

Published electronically:
September 30, 2009

Additional Notes:
The research of the second author was supported by NSC (grant number 95-2115-M-007-009) and the research center NCTS of Taiwan.

Communicated by:
Chuu-Lian Terng

Article copyright:
© Copyright 2009
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.