Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Maximum likelihood estimation in Skorohod stochastic differential equations


Author: Jaya P. N. Bishwal
Journal: Proc. Amer. Math. Soc. 138 (2010), 1471-1478
MSC (2010): Primary 62F12, 62M05; Secondary 60F05, 60H05, 60H10
DOI: https://doi.org/10.1090/S0002-9939-09-10113-2
Published electronically: November 12, 2009
MathSciNet review: 2578541
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Consistency and limit distribution of the maximum likelihood estimator of a parameter in the drift coefficient of an anticipative Skorohod stochastic differential equation satisfying a boundary condition are obtained based on $ n$ independent trajectories of the corresponding Skorohod diffusion inside a time interval $ [0, T]$ as $ n \rightarrow \infty$. The results are illustrated for the anticipative Ornstein-Uhlenbeck process.


References [Enhancements On Off] (What's this?)

  • 1. Bishwal, J.P.N. (2008) : Parameter Estimation in Stochastic Differential Equations, Lecture Notes in Mathematics, 1923, Springer-Verlag, Berlin. MR 2360279 (2009c:62007)
  • 2. Buckdahn, R. (1992) : Skorohod stochastic differential equations of diffusion type, Prob. Theor. Rel. Fields 93, 297-323. MR 1180703 (93g:60128)
  • 3. Buckdahn, R. (1994) : Anticipative Girsanov transformations and Skorohod stochastic differential equations, Memoirs Amer. Math. Soc. 111, no. 533. MR 1219706 (95c:60053)
  • 4. Buckdahn, R. and Nualart, D. (1993) : Skorohod stochastic differential equations with boundary conditions, Stoch. Stoch. Reports 45, 211-235. MR 1306932 (95j:60085)
  • 5. Grenander, U. (1993) : General Pattern Theory. A Mathematical Study of Regular Structures, The Clarendon Press, Oxford University Press, New York. MR 1270904 (96e:68118)
  • 6. Imkeller, P. (1993) : Existence and continuity of occupation densities of stochastic integral processes, Ann. Probab. 21, 1050-1072. MR 1217580 (94c:60089)
  • 7. Jamison, B. (1974) : Reciprocal processes, Z. Wahrscheinlichkeitstheor. Verw. Geb. 30, 65-86. MR 0359016 (50:11471)
  • 8. Kusuoka, S. (1982) : The nonlinear transformation of Gaussian measure on Banach space and its absolute continuity. I, J. Fac. Sci. Univ. Tokyo, Sect. IA Math. 29, 567-597. MR 687592 (84j:60015a)
  • 9. Kutoyants, Yu. A. (1984) : Parameter Estimation for Stochastic Processes (translated and edited by B.L.S. Prakasa Rao), Heldermann-Verlag, Berlin. MR 777685 (86b:62145)
  • 10. Kutoyants, Yu. A. (1994) : Identification of Dynamical Systems with Small Noise, Kluwer, Dordrecht. MR 1332492 (97b:93093)
  • 11. Kutoyants, Yu. A. (2004) : Statistical Inference for Ergodic Diffusion Processes, Springer-Verlag, London-New York-Berlin. MR 2144185 (2006b:62005)
  • 12. Nualart, D. (1995) : Malliavin Calculus and Related Topics, Springer-Verlag, New York-Berlin. MR 1344217 (96k:60130)
  • 13. Nualart, D. and Pardoux, É. (1988) : Stochastic calculus with anticipating integrands, Prob. Theor. Relat. Fields 78, 535-581. MR 950346 (89h:60089)
  • 14. Nualart, D. and Pardoux, É. (1991) : Boundary value problems for stochastic differential equations, Ann. Probab. 19, 1118-1144. MR 1112409 (92j:60072)
  • 15. Ocone, D. and Pardoux, É. (1989) : Linear stochastic differential equations with boundary conditions, Prob. Theory Relat. Fields 82, 489-526. MR 1002898 (91a:60154)
  • 16. Platen, E. and Rebolledo, R. (1994) : Pricing via anticipative stochastic calculus, Adv. Appl. Probab. 26, 1006-1021. MR 1303874 (96e:90005)
  • 17. Pardoux, É. (1990) : Applications of anticipating stochastic calculus to stochastic differential equations, Lect. Notes. in Math., 1444, Springer, Berlin, 63-105. MR 1078843 (92b:60049)
  • 18. Pikovsky, I. and Karatzas, I. (1996) : Anticipative portfolio optimization, Advances in Applied Probability 28, 1095-1122. MR 1418248 (98b:90020)
  • 19. Simon, B. (1979) : Trace Ideals and Their Applications, London Math. Society, Lecture Notes Series, 35, Cambridge University Press, Cambridge-New York. MR 541149 (80k:47048)
  • 20. Skorohod, A.V. (1975) : On a generalization of the stochastic integral, Theory Probab. Appl. 20, 219-223. MR 0391258 (52:12079)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 62F12, 62M05, 60F05, 60H05, 60H10

Retrieve articles in all journals with MSC (2010): 62F12, 62M05, 60F05, 60H05, 60H10


Additional Information

Jaya P. N. Bishwal
Affiliation: Department of Mathematics and Statistics, University of North Carolina at Charlotte, 376 Fretwell Building, 9201 University City Boulevard, Charlotte, North Carolina 28223-0001
Email: J.Bishwal@uncc.edu

DOI: https://doi.org/10.1090/S0002-9939-09-10113-2
Keywords: Skorohod stochastic differential equations, Skorohod integral, anticipative Girsanov transformation, maximum likelihood estimator, consistency, limit distribution, Carleman-Fredholm determinant.
Received by editor(s): August 15, 2008
Received by editor(s) in revised form: May 15, 2009
Published electronically: November 12, 2009
Communicated by: Edward C. Waymire
Article copyright: © Copyright 2009 American Mathematical Society

American Mathematical Society