Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Weak continuity of the Gauss-Codazzi-Ricci system for isometric embedding


Authors: Gui-Qiang Chen, Marshall Slemrod and Dehua Wang
Journal: Proc. Amer. Math. Soc. 138 (2010), 1843-1852
MSC (2010): Primary 53C42, 53C21, 53C45, 35L65, 35M10, 35B35; Secondary 53C24, 57R40, 57R42, 58J32
DOI: https://doi.org/10.1090/S0002-9939-09-10187-9
Published electronically: December 31, 2009
MathSciNet review: 2587469
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We establish the weak continuity of the Gauss-Coddazi-Ricci system for isometric embedding with respect to the uniform $ L^p$-bounded solution sequence for $ p>2$, which implies that the weak limit of the isometric embeddings of the manifold in a fixed coordinate chart is an isometric immersion. More generally, we establish a compensated compactness framework for the Gauss-Codazzi-Ricci system in differential geometry. That is, given any sequence of approximate solutions to this system which is uniformly bounded in $ L^2$ and has reasonable bounds on the errors made in the approximation (the errors are confined in a compact subset of $ H^{-1}_{\text{loc}}$), the approximating sequence has a weakly convergent subsequence whose limit is a solution of the Gauss-Codazzi-Ricci system. Furthermore, a minimizing problem is proposed as a selection criterion. For these, no restriction on the Riemann curvature tensor is made.


References [Enhancements On Off] (What's this?)

  • 1. J. M. Ball, Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rational Mech. Anal. 63 (1976/77), 337-403. MR 0475169 (57:14788)
  • 2. E. Berger, R. Bryant, and P. Griffiths, Some isometric embedding and rigidity results for Riemannian manifolds, Proc. Nat. Acad. Sci. U.S.A. 78 (1981), 4657-4660. MR 627257 (82h:53074)
  • 3. E. Berger, R. Bryant, and P. Griffiths, The Gauss equations and rigidity of isometric embeddings, Duke Math. J. 50 (1983), 803-892. MR 714831 (85k:53056)
  • 4. R. L. Bryant, P. A. Griffiths, and D. Yang, Characteristics and existence of isometric embeddings, Duke Math. J. 50 (1983), 893-994. MR 726313 (85d:53027)
  • 5. Yu. D. Burago and S. Z. Shefel, The geometry of surfaces in Euclidean spaces, Geometry III, 1-85, Encyclopaedia Math. Sci., 48, Burago and Zalggaller (eds.), Springer-Verlag: Berlin, 1992. MR 1306734
  • 6. E. Cartan, Sur la possibilité de plonger un espace Riemannian donné dans un espace Euclidien, Ann. Soc. Pol. Math. 6 (1927), 1-7.
  • 7. B.-Y. Chen, Classification of locally symmetric spaces which admit a totally umbilical hypersurface, Soochow J. Math. 6 (1980), 39-48. MR 626317 (82j:53096)
  • 8. G.-Q. Chen, M. Slemrod, and D. Wang, Isometric immersions and compensated compactness, Commun. Math. Phys., in press.
  • 9. B. Dacorogna, Weak Continuity and Weak Lower Semicontinuity of Nonlinear Functionals, Springer-Verlag: Berlin, 1982. MR 658130 (84f:49020)
  • 10. C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, second edition, Springer-Verlag: Berlin, 2005. MR 2169977 (2006d:35159)
  • 11. B. A. DiDonna, T. A. Witten, S. C. Venkataramani, and E. M. Kramer, Singularities, structures, and scaling in deformed m-dimensional elastic manifolds. Phys. Rev. E (3) 65 (2002), 016603, 1-25. MR 1877621 (2002k:82091)
  • 12. L. P. Eisenhart, Riemannian Geometry, eighth printing, Princeton University Press: Princeton, NJ, 1997. MR 1487892 (98h:53001)
  • 13. L. C. Evans, Weak Convergence Methods for Nonlinear Partial Differential Equations, CBMS-RCSM, 74, Amer. Math. Soc.: Providence, RI, 1990. MR 1034481 (91a:35009)
  • 14. H. F. Goenner, On the interdependency of the Gauss-Codazzi-Ricci equations of local isometric embedding, General Relativity and Gravitation 8 (1977), 139-145. MR 0467606 (57:7462)
  • 15. R. Greene, Isometric embeddings of Riemannian and pseudo-Riemannian manifolds, Memoirs Amer. Math. Soc., 97, Amer. Math. Soc.: Providence, RI, 1970. MR 0262980 (41:7585)
  • 16. M. Günther, On the perturbation problem associated to isometric embeddings of Riemannian manifolds, Ann. Global Anal. Geom. 7 (1989), 69-77. MR 1029846 (91a:58023)
  • 17. Q. Han and J.-X. Hong, Isometric Embedding of Riemannian Manifolds in Euclidean Spaces, Mathematical Surveys and Monographs, 130, Amer. Math. Soc.: Providence, RI, 2006. MR 2261749 (2008e:53055)
  • 18. M. Janet, Sur la possibilité de plonger un espace Riemannian donné dans un espace Euclidien, Ann. Soc. Pol. Math. 5 (1926), 38-43.
  • 19. C. B. Morrey, Multiple Integrals in the Calculus of Variations, Springer: Berlin, New York, 1966. MR 0202511 (34:2380)
  • 20. S. Müller, A surprising higher integrability property of mappings with positive determinant, Bull. Amer. Math. Soc. (N.S.) 21 (1989), 245-248. MR 999618 (90c:49022)
  • 21. F. Murat, Compacité par compensation, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 5 (1978), 489-507. MR 506997 (80h:46043a)
  • 22. F. Murat, Compacité par compensation. II, in: Proceedings of the International Meeting on Recent Methods in Nonlinear Analysis (Rome, 1978), pp. 245-256, Pitagora: Bologna, 1979. MR 533170 (80h:46043b)
  • 23. G. Nakamura and Y. Maeda, Local isometric embedding problem of Riemannian $ 3$-manifold into $ \mathbb{R}\sp 6$, Proc. Japan Acad. Ser. A: Math. Sci. 62 (1986), 257-259. MR 868813 (88b:53026)
  • 24. J. Nash, The imbedding problem for Riemannian manifolds, Ann. of Math. (2) 63 (1956), 20-63. MR 0075639 (17:782b)
  • 25. M. Spivak, A Comprehensive Introduction to Differential Geometry, Publish or Perish, Inc.: Boston, MA, Vols. I-II, 1970; Vols. III-V, 1975. MR 0532830 (82g:53003a), MR 0532831 (82g:53003b); MR 0532832 (82g:53003c), MR 0532833 (82g:53003d), MR 0532834 (82g:53003e)
  • 26. L. Tartar, Compensated compactness and applications to partial differential equations, in: Nonlinear Analysis and Mechanics: Heriot-Watt Symposium, Vol. IV, pp. 136-212, Res. Notes in Math., 39, Pitman: Boston, MA; London, 1979. MR 584398 (81m:35014)
  • 27. L. Tartar, The compensated compactness method applied to systems of conservation laws, in: Systems of Nonlinear Partial Differential Equations (Oxford, 1982), 263-285, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 111, Reidel: Dordrecht, 1983. MR 725524 (85e:35079)
  • 28. T. A. Witten, Stress focusing in elastic sheets, Reviews of Modern Physics 79 (2007), 643-675. MR 2326936 (2008e:74052)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 53C42, 53C21, 53C45, 35L65, 35M10, 35B35, 53C24, 57R40, 57R42, 58J32

Retrieve articles in all journals with MSC (2010): 53C42, 53C21, 53C45, 35L65, 35M10, 35B35, 53C24, 57R40, 57R42, 58J32


Additional Information

Gui-Qiang Chen
Affiliation: School of Mathematical Sciences, Fudan University, Shanghai 200433, People’s Republic of China – and – Department of Mathematics, Northwestern University, Evanston, Illinois 60208 – and – Mathematical Institute, University of Oxford, Oxford, OX1 3LB, United Kingdom
Email: gqchen@math.northwestern.edu

Marshall Slemrod
Affiliation: Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706 – and – Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260 – and – Department of Mathematical Sciences, Korean Advanced Institute for Science and Technology, Daejeon, Republic of Korea
Email: slemrod@math.wisc.edu

Dehua Wang
Affiliation: Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
Email: dwang@math.pitt.edu

DOI: https://doi.org/10.1090/S0002-9939-09-10187-9
Keywords: Weak continuity, Gauss-Codazzi-Ricci system, isometric embedding, weak convergence, approximate solutions, compensated compactness, Div-Curl lemma, minimization problem, selection criterion, Riemann curvature tensor
Received by editor(s): August 14, 2009
Received by editor(s) in revised form: August 27, 2009
Published electronically: December 31, 2009
Communicated by: Walter Craig
Article copyright: © Copyright 2009 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society