PoissonPinsker factor and infinite measure preserving group actions
Author:
Emmanuel Roy
Journal:
Proc. Amer. Math. Soc. 138 (2010), 20872094
MSC (2010):
Primary 37A40, 37A35, 60G51; Secondary 37A15, 37A50
Published electronically:
February 5, 2010
MathSciNet review:
2596046
Fulltext PDF
Abstract 
References 
Similar Articles 
Additional Information
Abstract: We solve the problem of the existence of a PoissonPinsker factor for a conservative ergodic infinite measure preserving action of a countable amenable group by proving the following dichotomy: either the system has totally positive Poisson entropy (and is of zero type) or it possesses a PoissonPinsker factor. If is abelian and the entropy positive, the spectrum is absolutely continuous (Lebesgue countable if ) on the whole space in the first case and in the orthocomplement of the space of the PoissonPinsker factor in the second.
 1.
J. Aaronson and K. K. Park, Predictability, entropy and information of infinite transformations, Fund. Math. 206 (2009), 121.
 2.
I. A. Danilenko and D. J. Rudolph, Conditional entropy theory in infinite measure and a question of Krengel, Israel J. Math. 172 (2009), no. 1, 93117.
 3.
T. de la Rue and E. Janvresse, Krengel entropy does not kill Poisson entropy, preprint.
 4.
Y.
Derriennic, K.
Frączek, M.
Lemańczyk, and F.
Parreau, Ergodic automorphisms whose weak closure of offdiagonal
measures consists of ergodic selfjoinings, Colloq. Math.
110 (2008), no. 1, 81–115. MR 2353900
(2008j:37001), 10.4064/cm11013
 5.
A.
H. Dooley and V.
Ya. Golodets, The spectrum of completely positive entropy actions
of countable amenable groups, J. Funct. Anal. 196
(2002), no. 1, 1–18. MR 1941988
(2003m:37006), 10.1006/jfan.2002.3966
 6.
E.
Glasner, J.P.
Thouvenot, and B.
Weiss, Entropy theory without a past, Ergodic Theory Dynam.
Systems 20 (2000), no. 5, 1355–1370. MR 1786718
(2001h:37011), 10.1017/S0143385700000730
 7.
E. Janvresse, T. Meyerovitch, T. de la Rue, and E. Roy, Poisson suspensions and entropy for infinite transformations, Trans. Amer. Math. Soc., to appear.
 8.
Ulrich
Krengel, Entropy of conservative transformations, Z.
Wahrscheinlichkeitstheorie und Verw. Gebiete 7 (1967),
161–181. MR 0218522
(36 #1608)
 9.
William
Parry, Entropy and generators in ergodic theory, W. A.
Benjamin, Inc., New YorkAmsterdam, 1969. MR 0262464
(41 #7071)
 10.
E. Roy, Mesures de Poisson, infinie divisibilité et propriétés ergodiques, Ph.D. thesis, Université Paris 6, 2005.
 11.
Emmanuel
Roy, Poisson suspensions and infinite ergodic theory, Ergodic
Theory Dynam. Systems 29 (2009), no. 2,
667–683. MR 2486789
(2011h:37011), 10.1017/S0143385708080279
 12.
JeanPaul
Thouvenot, Une classe de systèmes pour lesquels la
conjecture de Pinsker est vraie, Israel J. Math. 21
(1975), no. 23, 208–214 (French, with English summary).
Conference on Ergodic Theory and Topological Dynamics (Kibbutz Lavi, 1974).
MR
0382602 (52 #3484)
 1.
 J. Aaronson and K. K. Park, Predictability, entropy and information of infinite transformations, Fund. Math. 206 (2009), 121.
 2.
 I. A. Danilenko and D. J. Rudolph, Conditional entropy theory in infinite measure and a question of Krengel, Israel J. Math. 172 (2009), no. 1, 93117.
 3.
 T. de la Rue and E. Janvresse, Krengel entropy does not kill Poisson entropy, preprint.
 4.
 Y. Derriennic, K. Fraczek, M. Lema czyk, and F. Parreau, Ergodic automorphisms whose weak closure of offdiagonal measures consists of ergodic selfjoinings, Colloq. Math. 110 (2008), 81115. MR 2353900 (2008j:37001)
 5.
 A. H. Dooley and V. Ya. Golodets, The spectrum of completely positive entropy actions of countable amenable groups, J. Funct. Anal. 196 (2002), 118. MR 1941988 (2003m:37006)
 6.
 E. Glasner, J.P. Thouvenot, and B. Weiss, Entropy theory without a past, Ergodic Theory Dynam. Systems 20 (2000), 13551370. MR 1786718 (2001h:37011)
 7.
 E. Janvresse, T. Meyerovitch, T. de la Rue, and E. Roy, Poisson suspensions and entropy for infinite transformations, Trans. Amer. Math. Soc., to appear.
 8.
 U. Krengel, Entropy of conservative transformations, Z. Wahrscheinlichkeitstheorie und Verw. Geb. 7 (1967), 161181. MR 0218522 (36:1608)
 9.
 W. Parry, Entropy and generators in ergodic theory, W. A. Benjamin, Inc., New YorkAmsterdam, 1969. MR 0262464 (41:7071)
 10.
 E. Roy, Mesures de Poisson, infinie divisibilité et propriétés ergodiques, Ph.D. thesis, Université Paris 6, 2005.
 11.
 , Poisson suspensions and infinite ergodic theory, Ergodic Theory Dynam. Systems 29 (2009), no. 2, 667683. MR 2486789
 12.
 J.P. Thouvenot, Une classe de systèmes pour lesquels la conjecture de Pinsker est vraie, Israel J. Math. 21 (1975), no. 23, 208214. MR 0382602 (52:3484)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (2010):
37A40,
37A35,
60G51,
37A15,
37A50
Retrieve articles in all journals
with MSC (2010):
37A40,
37A35,
60G51,
37A15,
37A50
Additional Information
Emmanuel Roy
Affiliation:
Laboratoire Analyse Géométrie et Applications, UMR 7539, Université Paris 13, 99 avenue J.B. Clément, F93430 Villetaneuse, France
Email:
roy@math.univparis13.fr
DOI:
http://dx.doi.org/10.1090/S000299391010224X
Keywords:
Poisson suspensions,
infinite ergodic theory,
joinings
Received by editor(s):
March 29, 2009
Received by editor(s) in revised form:
September 22, 2009
Published electronically:
February 5, 2010
Additional Notes:
This paper was written during the MSRI semester program “Ergodic Theory and Additive Combinatorics” in Berkeley. The author is very grateful to this institution and to the organizers of this program for funding his research during this semester.
Communicated by:
Bryna Kra
Article copyright:
© Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.
