Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Generalized Young walls and crystal bases for quantum affine algebra of type $ A$


Authors: Jeong-Ah Kim and Dong-Uy Shin
Journal: Proc. Amer. Math. Soc. 138 (2010), 3877-3889
MSC (2010): Primary 17B37, 81R50
DOI: https://doi.org/10.1090/S0002-9939-2010-10428-8
Published electronically: June 9, 2010
MathSciNet review: 2679610
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We give a new realization of the crystal $ B(\infty)$ of $ U_q^{-}(A_n^{(1)})$ using generalized Young walls, a modified notion of Young walls of type $ A_n^{(1)}$. Moreover, by the fact that the irreducible highest weight crystal $ B(\lambda)$ lies in the crystal $ B(\infty)\otimes R_{\lambda}$, we construct the crystal $ B(\lambda)$ using generalized Young walls.


References [Enhancements On Off] (What's this?)

  • 1. M. Jimbo, K. C. Misra, T. Miwa, M. Okado, Combinatorics of representations of $ U_q(\widehat{sl}(n))$ at $ q=0$, Comm. Math. Phys. 136 (1991), 543-566. MR 1099695 (93a:17015)
  • 2. S.-J. Kang, Crystal bases for quantum affine algebras and combinatorics of Young walls, Proc. London Math. Soc. (3) 86 (2003), 29-69. MR 1971463 (2004c:17028)
  • 3. S.-J. Kang, M. Kashiwara, K. C. Misra, Crystal bases of Verma modules for quantum affine Lie algebras, Compositio Math. 92 (1994), 299-325. MR 1286129 (95h:17016)
  • 4. S.-J. Kang, M. Kashiwara, K. C. Misra, T. Miwa, T. Nakashima, A. Nakayashiki, Affine crystals and vertex models, Int. J. Mod. Phys. A. Suppl. 1A (1992), 449-484. MR 1187560 (94a:17008)
  • 5. S.-J. Kang, J.-A. Kim, D.-U. Shin, Monomial realization of crystal bases for special linear Lie algebras, J. Algebra 274 (2004), 629-642. MR 2043368 (2005a:17010)
  • 6. S.-J. Kang, J.-A. Kim, D.-U. Shin, Modified Nakajima monomials and the crystal $ B(\infty)$, J. Algebra 308 (2007), 524-535. MR 2295073 (2008b:17020)
  • 7. M. Kashiwara, On crystal bases of the $ Q$-analogue of universal enveloping algebras, Duke Math. J. 63 (1991), 465-516. MR 1115118 (93b:17045)
  • 8. M. Kashiwara, T. Nakashima, Crystal graphs for representations of the $ q$-analogue of classical Lie algebras, J. Algebra 165 (1994), 295-345. MR 1273277 (95c:17025)
  • 9. P. Littelmann, Paths and root operators in representation theory, Ann. of Math. (2) 142 (1995), 499-525. MR 1356780 (96m:17011)
  • 10. T. Nakashima, Polyhedral realizations of crystal bases for integrable highest weight modules, J. Algebra 219 (1999), 571-597. MR 1706829 (2000g:17020)
  • 11. T. Nakashima, A. Zelevinsky, Polyhedral realizations of crystal bases for quantized Kac-Moody algebras, Adv. Math. 131 (1997), 253-278. MR 1475048 (98m:17023)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 17B37, 81R50

Retrieve articles in all journals with MSC (2010): 17B37, 81R50


Additional Information

Jeong-Ah Kim
Affiliation: Department of Mathematics, University of Seoul, Seoul, 130-743, Korea
Email: jakim@uos.ac.kr

Dong-Uy Shin
Affiliation: Department of Mathematics Education, Hanyang University, Seoul 133-791, Korea
Email: dushin@hanyang.ac.kr

DOI: https://doi.org/10.1090/S0002-9939-2010-10428-8
Received by editor(s): August 12, 2009
Received by editor(s) in revised form: January 20, 2010, and February 3, 2010
Published electronically: June 9, 2010
Additional Notes: This work was supported by the research fund of Hanyang University (HY-2009-O)
Communicated by: Gail R. Letzter
Article copyright: © Copyright 2010 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society