Existence of good sweepouts on closed manifolds
Authors:
Longzhi Lin and Lu Wang
Journal:
Proc. Amer. Math. Soc. 138 (2010), 40814088
MSC (2010):
Primary 53C22; Secondary 58J35
Published electronically:
May 26, 2010
MathSciNet review:
2679629
Fulltext PDF
Abstract 
References 
Similar Articles 
Additional Information
Abstract: In this note we establish estimates for the harmonic map heat flow from into a closed manifold, and we use it to construct sweepouts with the following good property: each curve in the tightened sweepout, whose energy is close to the maximal energy of curves in the sweepout, is itself close to a closed geodesic.
 1.
George
D. Birkhoff, Dynamical systems with two degrees of
freedom, Trans. Amer. Math. Soc.
18 (1917), no. 2,
199–300. MR
1501070, http://dx.doi.org/10.1090/S00029947191715010703
 2.
George
D. Birkhoff, Dynamical systems, With an addendum by Jurgen
Moser. American Mathematical Society Colloquium Publications, Vol. IX,
American Mathematical Society, Providence, R.I., 1966. MR 0209095
(35 #1)
 3.
Tobias
H. Colding and Camillo
De Lellis, The minmax construction of minimal surfaces,
Surveys in differential geometry, Vol.\ VIII (Boston, MA, 2002) Surv.
Differ. Geom., VIII, Int. Press, Somerville, MA, 2003,
pp. 75–107. MR 2039986
(2005a:53008), http://dx.doi.org/10.4310/SDG.2003.v8.n1.a3
 4.
Tobias
H. Colding and William
P. Minicozzi II, Estimates for the extinction time for
the Ricci flow on certain 3manifolds and a question of Perelman,
J. Amer. Math. Soc. 18 (2005), no. 3, 561–569 (electronic). MR 2138137
(2006c:53068), http://dx.doi.org/10.1090/S0894034705004868
 5.
Tobias
H. Colding and William
P. Minicozzi II, Width and mean curvature flow, Geom. Topol.
12 (2008), no. 5, 2517–2535. MR 2460870
(2009k:53165), http://dx.doi.org/10.2140/gt.2008.12.2517
 6.
Tobias
H. Colding and William
P. Minicozzi II, Width and finite extinction time of Ricci
flow, Geom. Topol. 12 (2008), no. 5,
2537–2586. MR 2460871
(2009k:53166), http://dx.doi.org/10.2140/gt.2008.12.2537
 7.
Christopher
B. Croke, Area and the length of the shortest closed geodesic,
J. Differential Geom. 27 (1988), no. 1, 1–21.
MR 918453
(89a:53050)
 8.
Matthew
A. Grayson, Shortening embedded curves, Ann. of Math. (2)
129 (1989), no. 1, 71–111. MR 979601
(90a:53050), http://dx.doi.org/10.2307/1971486
 9.
Manfred
Gruber, Harnack inequalities for solutions of general second order
parabolic equations and estimates of their Hölder constants,
Math. Z. 185 (1984), no. 1, 23–43. MR 724044
(86b:35089), http://dx.doi.org/10.1007/BF01214972
 10.
Richard
S. Hamilton, Harmonic maps of manifolds with boundary, Lecture
Notes in Mathematics, Vol. 471, SpringerVerlag, BerlinNew York, 1975. MR 0482822
(58 #2872)
 11.
Frédéric
Hélein, Harmonic maps, conservation laws and moving
frames, 2nd ed., Cambridge Tracts in Mathematics, vol. 150,
Cambridge University Press, Cambridge, 2002. Translated from the 1996
French original; With a foreword by James Eells. MR 1913803
(2003g:58024)
 12.
Gary
M. Lieberman, Second order parabolic differential equations,
World Scientific Publishing Co., Inc., River Edge, NJ, 1996. MR 1465184
(98k:35003)
 13.
L. Lin, Closed geodesics in Alexandrov spaces of curvature bounded from above, to appear in J. Geom. Anal.
 14.
S.
K. Ottarsson, Closed geodesics on Riemannian manifolds via the heat
flow, J. Geom. Phys. 2 (1985), no. 1,
49–72. MR
834094 (87g:58024), http://dx.doi.org/10.1016/03930440(85)900191
 15.
G. Perelman, Finite extinction time for the solutions to the Ricci flow on certain three manifolds, arXiv:math.DG/0307245.
 16.
Michael
Struwe, On the evolution of harmonic mappings of Riemannian
surfaces, Comment. Math. Helv. 60 (1985), no. 4,
558–581. MR
826871 (87e:58056), http://dx.doi.org/10.1007/BF02567432
 17.
Michael
Struwe, Variational methods, 2nd ed., Ergebnisse der
Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related
Areas (3)], vol. 34, SpringerVerlag, Berlin, 1996. Applications to
nonlinear partial differential equations and Hamiltonian systems. MR 1411681
(98f:49002)
 1.
 G.D. Birkhoff, Dynamical systems with two degrees of freedom, Trans. Amer. Math. Soc. 18 (1917), no. 2, 199300. MR 1501070
 2.
 G.D. Birkhoff, Dynamical systems, Amer. Math. Soc. Colloq. Publ., vol. 9, Amer. Math. Soc., Providence, RI, 1927. MR 0209095
 3.
 T.H. Colding and C. De Lellis, The minmax construction of minimal surfaces, in Surv. Differ. Geom. VIII, Intl. Press, Somerville, MA, 2003. MR 2039986 (2005a:53008)
 4.
 T.H. Colding and W.P. Minicozzi II, Estimates for the extinction time for the Ricci flow on certain manifolds and a question of Perelman, J. Amer. Math. Soc. 18 (2005), no. 3, 561569. MR 2138137 (2006c:53068)
 5.
 T.H. Colding and W.P. Minicozzi II, Width and mean curvature flow, Geom. Topol. 12 (2008), no. 5, 25172535. MR 2460870 (2009k:53165)
 6.
 T.H. Colding and W.P. Minicozzi II, Width and finite extinction time of Ricci flow, Geom. Topol. 12 (2008), no. 5, 25372586. MR 2460871 (2009k:53166)
 7.
 C.B. Croke, Area and the length of the shortest closed geodesic, J. Differential Geom. 27 (1988), no. 1, 121. MR 0918453 (89a:53050)
 8.
 M.A. Grayson, Shortening embedded curves, Ann. of Math. (2) 129 (1989), no. 1, 71111. MR 0979601 (90a:53050)
 9.
 M. Gruber, Harnack inequalities for solutions of general second order parabolic equations and estimates of their Hölder constants, Math. Z. 185 (1984), no. 1, 2343. MR 0724044 (86b:35089)
 10.
 R.S. Hamilton, Harmonic maps of manifolds with boundary, Lecture Notes in Math., vol. 471, SpringerVerlag, BerlinNew York, 1975. MR 0482822
 11.
 F. Hélein, Harmonic maps, conservation laws and moving frames, Cambridge Tracts in Math., vol. 150, Cambridge University Press, Cambridge, 2002. MR 1913803 (2003g:58024)
 12.
 G.M. Lieberman, Second order parabolic differential equations, World Scientific Publishing Co., Inc., River Edge, NJ, 1996 (revised edition 2005). MR 1465184 (98k:35003)
 13.
 L. Lin, Closed geodesics in Alexandrov spaces of curvature bounded from above, to appear in J. Geom. Anal.
 14.
 S.K. Ottarsson, Closed geodesics on Riemannian manifolds via the heat flow, J. Geom. Phys. 2 (1985), no. 1, 4972. MR 0834094 (87g:58024)
 15.
 G. Perelman, Finite extinction time for the solutions to the Ricci flow on certain three manifolds, arXiv:math.DG/0307245.
 16.
 M. Struwe, On the evolution of harmonic mappings of Riemannian surfaces, Comment. Math. Helv. 60 (1985), no. 4, 558581. MR 0826871 (87e:58056)
 17.
 M. Struwe, Variational methods. Applications to nonlinear partial differential equations and Hamiltonian systems, Second edition. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 34. SpringerVerlag, Berlin, 1996. MR 1411681 (98f:49002)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (2010):
53C22,
58J35
Retrieve articles in all journals
with MSC (2010):
53C22,
58J35
Additional Information
Longzhi Lin
Affiliation:
Department of Mathematics, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218
Email:
lzlin@math.jhu.edu
Lu Wang
Affiliation:
Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139
Email:
luwang@math.mit.edu
DOI:
http://dx.doi.org/10.1090/S000299392010104513
PII:
S 00029939(2010)104513
Received by editor(s):
October 8, 2009
Received by editor(s) in revised form:
February 4, 2010
Published electronically:
May 26, 2010
Communicated by:
Richard A. Wentworth
Article copyright:
© Copyright 2010
American Mathematical Society
