Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Symbolic dynamics for nonhyperbolic systems


Authors: David Richeson and Jim Wiseman
Journal: Proc. Amer. Math. Soc. 138 (2010), 4373-4385
MSC (2010): Primary 37B30, 37B10; Secondary 37M99
DOI: https://doi.org/10.1090/S0002-9939-2010-10434-3
Published electronically: May 27, 2010
MathSciNet review: 2680062
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We introduce index systems, a tool for studying isolated invariant sets of dynamical systems that are not necessarily hyperbolic. The mapping of the index systems mimics the expansion and contraction of hyperbolic maps on the tangent space, and they may be used like Markov partitions to generate symbolic dynamics. Every continuous dynamical system satisfying a weak form of expansiveness possesses an index system. Because of their topological robustness, they can be used to obtain rigorous results from computer approximations of a dynamical system.


References [Enhancements On Off] (What's this?)

  • 1. E. Akin, The general topology of dynamical systems, American Mathematical Society, Providence, RI, 1993. MR 1219737 (94f:58041)
  • 2. N. Aoki and K. Hiraide, Topological theory of dynamical systems, North-Holland Mathematical Library, vol. 52, North-Holland Publishing Co., Amsterdam, 1994. MR 1289410 (95m:58095)
  • 3. G. Arioli, Periodic orbits, symbolic dynamics and topological entropy for the restricted $ 3$-body problem, Comm. Math. Phys. 231 (2002), no. 1, 1-24. MR 1947690 (2003j:70011)
  • 4. R. Bowen and J. Franks, Homology for zero-dimensional nonwandering sets, Ann. of Math. (2) 106 (1977), no. 1, 73-92. MR 0458492 (56:16692)
  • 5. M. Carbinatto, J. Kwapisz, and K. Mischaikow, Horseshoes and the Conley index spectrum, Ergodic Theory Dynam. Systems 20 (2000), no. 2, 365-377. MR 1756975 (2001e:37020)
  • 6. S. Day, R. Frongillo, and R. Treviño, Algorithms for rigorous entropy bounds and symbolic dynamics, SIAM J. Appl. Dyn. Syst. 7 (2008), no. 4, 1477-1506. MR 2470974 (2010b:37023)
  • 7. S. Day, O. Junge, and K. Mischaikow, Towards automated chaos verification, Proceedings of EQUADIFF 2003, World Sci. Publ., Hackensack, NJ, 2005. 157-162. MR 2185012
  • 8. R. Easton, Isolating blocks and symbolic dynamics, J. Differential Equations 17 (1975), 96-118. MR 0370663 (51:6889)
  • 9. -, Orbit structure near trajectories biasymptotic to invariant tori, Classical mechanics and dynamical systems (Medford, Mass., 1979), Lecture Notes in Pure and Appl. Math., vol. 70, Dekker, New York, 1981, pp. 55-67. MR 640118 (83h:58040)
  • 10. -, Isolating blocks and epsilon chains for maps, Phys. D 39 (1989), no. 1, 95-110. MR 1021184 (90m:58176)
  • 11. J. Franks and D. Richeson, Shift equivalence and the Conley index, Trans. Amer. Math. Soc. 352 (2000), no. 7, 3305-3322. MR 1665329 (2000j:37013)
  • 12. M. Gîdea, Leray functor and orbital Conley index for non-invariant sets, Discrete Contin. Dynam. Systems 5 (1999), no. 3, 617-630. MR 1696333 (2000f:37013)
  • 13. -, Non-smooth dynamical systems that exhibit hyperbolic behavior, Rev. Roumaine Math. Pures Appl. 45 (2000), no. 4, 631-646 (2001). MR 1836294 (2002e:37014)
  • 14. M. Gîdea and C. Robinson, Symbolic dynamics for transition tori. II, New advances in celestial mechanics and Hamiltonian systems, Kluwer/Plenum, New York, 2004, pp. 95-108. MR 2083007 (2005k:37130)
  • 15. B. Hasselblatt and A. Katok, Principal structures, Handbook of dynamical systems. Vol. 1A (B. Hasselblatt and A. Katok, eds.), North-Holland, Amsterdam, 2002, pp. 1-203. MR 1928517 (2003c:37002)
  • 16. T. Kaczynski, Conley index for set-valued maps: from theory to computation, Conley index theory (Warsaw, 1997), Banach Center Publ., vol. 47, Polish Acad. Sci., Warsaw, 1999, pp. 57-65. MR 1692361 (2000d:37015)
  • 17. J. Kwapisz, Cocyclic subshifts, Math. Z. 234 (2000), no. 2, 255-290. MR 1765882 (2001j:37025)
  • 18. D. Lind and B. Marcus, An introduction to symbolic dynamics and coding, Cambridge University Press, Cambridge, 1995. MR 1369092 (97a:58050)
  • 19. K. Mischaikow, Topological techniques for efficient rigorous computation in dynamics, Acta Numer. 11 (2002), 435-477. MR 2009377 (2004k:37184)
  • 20. K. Mischaikow and M. Mrozek, Chaos in the Lorenz equations: a computer-assisted proof, Bull. Amer. Math. Soc. (N.S.) 32 (1995), no. 1, 66-72. MR 1276767 (95e:58121)
  • 21. M. Mrozek, Leray functor and cohomological Conley index for discrete dynamical systems, Trans. Amer. Math. Soc. 318 (1990), no. 1, 149-178. MR 0968888 (90f:34076)
  • 22. -, The Conley index and rigorous numerics, Non-linear analysis and boundary value problems for ordinary differential equations (Udine), CISM Courses and Lectures, vol. 371, Springer, Vienna, 1996, pp. 175-195. MR 1465243 (98i:58161)
  • 23. -, An algorithm approach to the Conley index theory, J. Dynam. Differential Equations 11 (1999), no. 4, 711-734. MR 1725408 (2000j:37014)
  • 24. D. Richeson and J. Wiseman, Index systems and symbolic dynamics, in preparation.
  • 25. J. Robbin and D. Salamon, Dynamical systems, shape theory and the Conley index, Ergodic Theory Dynam. Systems 8$ \sp *$ (1988), Charles Conley Memorial Issue, 375-393. MR 0967645 (89h:58094)
  • 26. C. Robinson, Dynamical systems, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1995. MR 1396532 (97e:58064)
  • 27. A. Szymczak, The Conley index for discrete semidynamical systems, Topology Appl. 66 (1995), no. 3, 215-240. MR 1359514 (97f:58113)
  • 28. -, The Conley index and symbolic dynamics, Topology 35 (1996), no. 2, 287-299. MR 1380498 (97b:58054)
  • 29. J. B. van den Berg, R. C. Vandervorst, and W. Wójcik, Chaos in orientation reversing twist maps of the plane, Topology Appl. 154 (2007), no. 13, 2580-2606. MR 2332874 (2008f:37093)
  • 30. J. Wiseman, Detection of renewal system factors via the Conley index, Trans. Amer. Math. Soc. 354 (2002), no. 12, 4953-4968 (electronic). MR 1926844 (2003e:37022)
  • 31. -, The square of a map, symbolic dynamics and the Conley index, Rocky Mountain J. Math. 37 (2007), no. 1, 327-342. MR 2316452 (2009b:37028)
  • 32. K. Wójcik and P. Zgliczyński, Isolating segments, fixed point index, and symbolic dynamics. III. Applications, J. Differential Equations 183 (2002), no. 1, 262-278. MR 1917245 (2003g:37023)
  • 33. P. Zgliczyński, Computer assisted proof of chaos in the Rössler equations and in the Hénon map, Nonlinearity 10 (1997), no. 1, 243-252. MR 1430751 (98g:58120)
  • 34. P. Zgliczyński and M. Gidea, Covering relations for multidimensional dynamical systems, J. Differential Equations 202 (2004), no. 1, 32-58. MR 2060531 (2005c:37019a)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 37B30, 37B10, 37M99

Retrieve articles in all journals with MSC (2010): 37B30, 37B10, 37M99


Additional Information

David Richeson
Affiliation: Department of Mathematics and Computer Science, Dickinson College, Carlisle, Pennsylvania 17013
Email: richesod@dickinson.edu

Jim Wiseman
Affiliation: Department of Mathematics, Agnes Scott College, Decatur, Georgia 30030
Email: jwiseman@agnesscott.edu

DOI: https://doi.org/10.1090/S0002-9939-2010-10434-3
Received by editor(s): September 4, 2009
Received by editor(s) in revised form: February 9, 2010
Published electronically: May 27, 2010
Communicated by: Bryna Kra
Article copyright: © Copyright 2010 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society