Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Stolarsky's conjecture and the sum of digits of polynomial values


Authors: Kevin G. Hare, Shanta Laishram and Thomas Stoll
Journal: Proc. Amer. Math. Soc. 139 (2011), 39-49
MSC (2010): Primary 11B99, 11Y55
DOI: https://doi.org/10.1090/S0002-9939-2010-10591-9
Published electronically: August 19, 2010
MathSciNet review: 2729069
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ s_q(n)$ denote the sum of the digits in the $ q$-ary expansion of an integer $ n$. In 1978, Stolarsky showed that $ \displaystyle{ \liminf_{n\to\infty}} \frac{s_2(n^2)}{s_2(n)} = 0$. He conjectured that, just as for $ n^2$, this limit infimum should be 0 for higher powers of $ n$. We prove and generalize this conjecture showing that for any polynomial $ p(x)=a_h x^h+a_{h-1} x^{h-1} + \dots + a_0 \in \mathbb{Z}[x]$ with $ h\geq 2$ and $ a_h>0$ and any base $ q$,

$\displaystyle \liminf_{n\to\infty} \frac{s_q(p(n))}{s_q(n)}=0.$

For any $ \varepsilon > 0$ we give a bound on the minimal $ n$ such that the ratio $ s_q(p(n))/ s_q(n) < \varepsilon$. Further, we give lower bounds for the number of $ n < N$ such that $ s_q(p(n))/s_q(n) < \varepsilon$.


References [Enhancements On Off] (What's this?)

  • 1. N. L. Bassily, I. Kátai, Distribution of the values of $ q$-additive functions on polynomial sequences, Acta Math. Hung. 68 (1995), 353-361. MR 1333478 (96c:11112)
  • 2. R. C. Bose, S. Chowla, Theorems in the additive theory of numbers, Comm. Math. Helv. 37 (1962/63), 141-147. MR 0144877 (26:2418)
  • 3. C. Dartyge, G. Tenenbaum, Congruences de sommes de chiffres de valeurs polynomiales, Bull. London Math. Soc. 38 (2006), no. 1, 61-69. MR 2201604 (2006k:11039)
  • 4. H. Delange, Sur la fonction sommatoire de la fonction ``somme des chiffres'', Enseign. Math. 21 (1975), 31-47. MR 0379414 (52:319)
  • 5. M. Drmota, J. Rivat, The sum-of-digits function of squares, J. London Math. Soc. (2) 72 (2005), no. 2, 273-292. MR 2156654 (2006d:11113)
  • 6. H. Halberstam, K. F. Roth, Sequences, Second edition. Springer-Verlag, New York-Berlin, 1983. MR 687978 (83m:10094)
  • 7. K. G. Hare, S. Laishram, T. Stoll, The sum of digits of $ n$ and $ n^2$, submitted, arxiv.org
  • 8. B. Lindström, On the binary digits of a power, J. Number Theory 65 (1997), 321-324. MR 1462846 (98e:11010)
  • 9. C. Mauduit, J. Rivat, Sur un probléme de Gelfond: la somme des chiffres des nombres premiers, Annals of Mathematics, to appear.
  • 10. C. Mauduit, J. Rivat, La somme des chiffres des carrés, Acta Mathematica 203 (2009), 107-148. MR 2545827
  • 11. G. Melfi, On simultaneous binary expansions of $ n$ and $ n^2$, J. Number Theory 111 (2005), no. 2, 248-256. MR 2130110 (2006g:11016)
  • 12. M. Peter, The summatory function of the sum-of-digits function on polynomial sequences, Acta Arith. 104 (2002), no. 1, 85-96. MR 1913736 (2003i:11140)
  • 13. T. Rivoal, On the bits counting function of real numbers, J. Aust. Math. Soc. 85 (2008), no. 1, 95-111. MR 2460868 (2009k:11121)
  • 14. K. B. Stolarsky, The binary digits of a power, Proc. Amer. Math. Soc. 71 (1978), 1-5. MR 495823 (80b:10020)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 11B99, 11Y55

Retrieve articles in all journals with MSC (2010): 11B99, 11Y55


Additional Information

Kevin G. Hare
Affiliation: Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1
Email: kghare@math.uwaterloo.ca

Shanta Laishram
Affiliation: Department of Mathematics, Indian Institute of Science Education and Research, Bhopal, 462 023, India
Email: shanta@isid.ac.in

Thomas Stoll
Affiliation: Institut de Mathématiques de Luminy, Université de la Méditerranée, 13288 Marseille Cedex 9, France
Email: stoll@iml.univ-mrs.fr

DOI: https://doi.org/10.1090/S0002-9939-2010-10591-9
Received by editor(s): January 22, 2010
Published electronically: August 19, 2010
Additional Notes: The first author was partially supported by NSERC; computational support was provided by a CFI/OIT grant
The second author was partially supported by an APART grant of the Austrian Academy of Sciences
Communicated by: Ken Ono
Article copyright: © Copyright 2010 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society