Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Ideal-triangularizability of nil-algebras generated by positive operators


Author: Marko Kandić
Journal: Proc. Amer. Math. Soc. 139 (2011), 485-490
MSC (2010): Primary 47A15, 47B65; Secondary 16N40
DOI: https://doi.org/10.1090/S0002-9939-2010-10476-8
Published electronically: July 12, 2010
MathSciNet review: 2736331
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: R. Drnovšek, D. Kokol-Bukovšek, L. Livshits, G. MacDonald, M. Omladič, and H. Radjavi constructed an irreducible set of positive nilpotent operators on $ L^p[0,1)$ which is closed under multiplication, addition and multiplication by positive real scalars with the property that any finite subset is ideal-triangularizable. In this paper we prove the following:

  1. every algebra of nilpotent operators which is generated by a set of positive operators on a Banach lattice is ideal-triangularizable whenever the nilpotency index of its operators is bounded;
  2. every finite subset of an algebra of nilpotent operators which is generated by a set of positive operators on a Banach lattice is ideal-triangularizable.


References [Enhancements On Off] (What's this?)

  • 1. A. Z. Ananin, A nil algebra with nonradical tensor square, Sibirsk. Math. Zh. 26 (1985), 192-194. (Russian) MR 788345 (86i:16006)
  • 2. R. Drnovšek, Triangularizing semigroups of positive operators on an atomic normed Riesz spaces, Proc. Edin. Math. Soc. 43 (2000), 43-55. MR 1744698 (2001i:47062)
  • 3. R. Drnovšek, M. Kandić, Ideal-triangularizability of semigroups of positive operators, Integral Equations and Operator Theory 64 (2009), no. 4, 539-552. MR 2534032
  • 4. R. Drnovšek, D. Kokol-Bukovšek, L. Livshits, G. MacDonald, M. Omladič, H. Radjavi, An irreducible semigroup of non-negative square-zero operators, Integral Equations and Operator Theory 42 (2002), no. 4, 449-460. MR 1885443 (2003j:47051)
  • 5. S. Grabiner, The nilpotency of Banach nil algebras, Proc. Amer. Math. Soc. 21 (1969), 510. MR 0236700 (38:4995)
  • 6. D. W. Hadwin, E. A. Nordgren, M. Radjabalipour, H. Radjavi, P. Rosenthal, On simultaneous triangularization of collections of operators, Houston J. Math. 17 (1991), no. 5, 581-602. MR 1147275 (93a:47004)
  • 7. I. Herstein, Noncommutative rings, Carus Mathematical Monographs 15, Mathematical Association of America (2005). MR 1449137 (97m:16001)
  • 8. G. Higman, On a conjecture of Nagata, Proc. Camb. Phil. Soc. 52 (1956), 1-4. MR 0073581 (17:453e)
  • 9. M. T. Jahandideh, On the ideal-triangularizability of positive operators on Banach lattices, Proc. Amer. Math. Soc. 125 (1997), 2661-2670. MR 1396983 (97j:47052)
  • 10. W. A. J. Luxemburg, A. C. Zaanen, Riesz spaces. I, North Holland, Amsterdam, 1971. MR 0511676 (58:23483)
  • 11. M. Nagata, On the nilpotency of nil-algebras, J. Math. Soc. Japan 4 (1952), 296-301. MR 0053088 (14:719g)
  • 12. E. R. Puczylowski, Nil algebras with nonradical tensor square, Proc. Amer. Math. Soc. 103 (1988), 401-403. MR 943055 (89e:16021)
  • 13. H. Radjavi, P. Rosenthal, Simultaneous triangularization, Universitext, Springer-Verlag, New York, 2000. MR 1736065 (2001e:47001)
  • 14. H. H. Schaefer, Banach Lattices and Positive Operators, Die Grundlehren der Mathematischen Wissenschaften 215, Springer-Verlag, Berlin-Heidelberg-New York, 1974. MR 0423039 (54:11023)
  • 15. Y. Zhong, Irreducible semigroups of functionally positive nilpotent operators, Trans. Amer. Math. Soc. 347 (1995), 3093-3100. MR 1264835 (95j:47008)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 47A15, 47B65, 16N40

Retrieve articles in all journals with MSC (2010): 47A15, 47B65, 16N40


Additional Information

Marko Kandić
Affiliation: Institute of Mathematics, Physics and Mechanics, Jadranska 19, 1000 Ljubljana, Slovenia
Email: marko.kandic@fmf.uni-lj.si

DOI: https://doi.org/10.1090/S0002-9939-2010-10476-8
Keywords: Banach lattices, positive operators, operator semigroups, ideal-reducibility, ideal-triangularizability, nilpotent algebras, nil-algebras
Received by editor(s): December 17, 2009
Received by editor(s) in revised form: March 2, 2010
Published electronically: July 12, 2010
Additional Notes: This work was supported by the Slovenian Research Agency
Communicated by: Nigel J. Kalton
Article copyright: © Copyright 2010 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society