Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Integrals of powers of loggamma


Authors: Tewodros Amdeberhan, Mark W. Coffey, Olivier Espinosa, Christoph Koutschan, Dante V. Manna and Victor H. Moll
Journal: Proc. Amer. Math. Soc. 139 (2011), 535-545
MSC (2010): Primary 33B15
DOI: https://doi.org/10.1090/S0002-9939-2010-10589-0
Published electronically: August 18, 2010
MathSciNet review: 2736336
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Properties of the integral of powers of $ \log \Gamma(x)$ from 0 to $ 1$ are considered. Analytic evaluations for the first two powers are presented. Empirical evidence for the cubic case is discussed.


References [Enhancements On Off] (What's this?)

  • 1. G. Andrews, R. Askey, and R. Roy.
    Special Functions, volume 71 of Encyclopedia of Mathematics and its Applications.
    Cambridge University Press, New York, 1999. MR 1688958 (2000g:33001)
  • 2. M. G. Beumer.
    Some special integrals.
    Amer. Math. Monthly, 68:645-647, 1961. MR 0132150 (24:A1997)
  • 3. H. Cohen and E. Friedman.
    Raabe's formula for $ p$-adic gamma and zeta functions.
    Ann. Inst. Fourier, Grenoble, 58:363-376, 2008. MR 2401225 (2009d:11165)
  • 4. L. Comtet.
    Advanced Combinatorics.
    D. Reidel Publishing Co., Dordrecht, Holland, 1974. MR 0460128 (57:124)
  • 5. J. Edwards.
    A treatise on the Integral Calculus, volume 2,
    MacMillan, New York, 1922.
  • 6. O. Espinosa and V. Moll.
    On some definite integrals involving the Hurwitz zeta function. Part 1.
    The Ramanujan Journal, 6:159-188, 2002. MR 1908196 (2003f:11127)
  • 7. O. Espinosa and V. Moll.
    On some definite integrals involving the Hurwitz zeta function. Part 2.
    The Ramanujan Journal, 6:449-468, 2002. MR 2125010 (2005m:11162)
  • 8. O. Espinosa and V. Moll.
    The evaluation of Tornheim double sums. Part 1.
    Journal of Number Theory, 116:200-229, 2006. MR 2197867 (2007c:11100)
  • 9. O. Espinosa and V. Moll.
    The evaluation of Tornheim double sums. Part 2.
    The Ramanujan Journal, 22:55-99, 2010. MR 2610609
  • 10. I. S. Gradshteyn and I. M. Ryzhik.
    Table of Integrals, Series, and Products.
    Edited by A. Jeffrey and D. Zwillinger. Academic Press, New York, 7th edition, 2007. MR 2360010 (2008g:00005)
  • 11. E. Kummer.
    Beitrag zur Theorie der Function $ \Gamma(x)$.
    J. Reine Angew. Math., 35:1-4, 1847.
  • 12. J. L. Raabe.
    Angenäherte Bestimmung der Factorenfolge $ 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \ldots n = \Gamma(1+n)= \int x^{n}e^{-x} dx$, wenn $ n$ eine sehr grosse Zahl ist.
    J. Reine Angew. Math., 25:146-159, 1840.
  • 13. E. T. Whittaker and G. N. Watson.
    Modern Analysis.
    Cambridge University Press, 1962. MR 0178117 (31:2375)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 33B15

Retrieve articles in all journals with MSC (2010): 33B15


Additional Information

Tewodros Amdeberhan
Affiliation: Department of Mathematics, Tulane University, New Orleans, Louisiana 70118
Email: tamdeberhan@math.tulane.edu

Mark W. Coffey
Affiliation: Department of Physics, Colorado School of Mines, Golden, Colorado 80401
Email: mcoffey@mines.edu

Olivier Espinosa
Affiliation: Departmento de Fisica, Universidad Santa Maria, Valparaiso, Chile
Email: olivier.espinosa@usm.cl

Christoph Koutschan
Affiliation: Department of Mathematics, Tulane University, New Orleans, Louisiana 70118
Email: ckoutsch@tulane.edu

Dante V. Manna
Affiliation: Department of Mathematics and Computer Science, Virginia Wesleyan College, Norfolk, Virginia 23502
Email: dmanna@vwc.edu

Victor H. Moll
Affiliation: Department of Mathematics, Tulane University, New Orleans, Louisiana 70118
Email: vhm@math.tulane.edu

DOI: https://doi.org/10.1090/S0002-9939-2010-10589-0
Keywords: Integrals, transformations, loggamma, Hurwitz zeta function
Received by editor(s): February 23, 2010
Received by editor(s) in revised form: March 8, 2010
Published electronically: August 18, 2010
Communicated by: Ken Ono
Article copyright: © Copyright 2010 American Mathematical Society

American Mathematical Society