Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Geometric versions of Schwarz's lemma for quasiregular mappings


Author: Dimitrios Betsakos
Journal: Proc. Amer. Math. Soc. 139 (2011), 1397-1407
MSC (2010): Primary 30C65, 30C80
DOI: https://doi.org/10.1090/S0002-9939-2010-10604-4
Published electronically: September 15, 2010
MathSciNet review: 2748432
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove monotonicity and distortion theorems for quasiregular mappings defined on the unit ball $ \mathbb{B}^n$ of $ \mathbb{R}^n$. Let $ K_I(f)$ be the inner dilatation of $ f$ and let $ \alpha=K_I(f)^{1/(1-n)}$. Let $ m_n$ denote $ n$-dimensional Lebesgue measure and $ c_n$ be the reduced conformal modulus in $ \mathbb{R}^n$. We prove that the functions $ r^{-n\alpha}m_n(f(r\mathbb{B}^n))$ and $ r^{-\alpha}c_n(f(r\mathbb{B}^n))$ are increasing for $ 0<r<1$. These results can be viewed as variants of the classical Schwarz lemma and as generalizations of recent results by Burckel et al. for holomorphic functions in the unit disk.


References [Enhancements On Off] (What's this?)

  • 1. G.D. Anderson, M.K. Vamanamurthy, M. Vuorinen, Dimension-free quasiconformal distortion in $ n$-space. Trans. Amer. Math. Soc. 297 (1986), no. 2, 687-706. MR 854093 (87j:30039)
  • 2. G.D. Anderson, M.K. Vamanamurthy, M. Vuorinen, Conformal Invariants, Inequalities, and Quasiconformal Maps. Wiley, 1997. MR 1462077 (98h:30033)
  • 3. A. Baernstein II, Integral means, univalent functions and circular symmetrization. Acta Math. 133 (1974), 139-169. MR 0417406 (54:5456)
  • 4. D. Betsakos, Equality cases in the symmetrization inequalities for Brownian transition functions and Dirichlet heat kernels. Ann. Acad. Sci. Fenn. Math. 33 (2008), 413-427. MR 2431373 (2009e:60175)
  • 5. R.B. Burckel, D.E. Marshall, D. Minda, P. Poggi-Corradini, T.J. Ransford, Area, capacity and diameter versions of Schwarz's lemma. Conform. Geom. Dyn. 12 (2008), 133-152. MR 2434356
  • 6. V.N. Dubinin, Symmetrization in the geometric theory of functions of a complex variable. Russian Math. Surveys 49 (1994), 1-79. MR 1307130 (96b:30054)
  • 7. W.K. Hayman, Multivalent Functions. Second edition. Cambridge University Press, 1994. MR 1310776 (96f:30003)
  • 8. E. Landau, O. Toeplitz, Über die großte Schwankung einer analytischen Funktion in einem Kreise. Arch. der Math. und Physik (3) 11 (1907), 302-307.
  • 9. O. Martio, V. Ryazanov, U. Srebro, E. Yakubov, Moduli in Modern Mapping Theory. Springer, 2009. MR 2466579
  • 10. O. Martio, S. Rickman, J. Väisälä, Definitions for quasiregular mappings. Ann. Acad. Sci. Fenn., Ser. A I 448 (1969). MR 0259114 (41:3756)
  • 11. T. Ransford, Potential Theory in the Complex Plane. Cambridge University Press, 1995. MR 1334766 (96e:31001)
  • 12. R. Remmert, Classical Topics in Complex Function Theory. Springer-Verlag, 1998. MR 1483074 (98g:30002)
  • 13. Yu. G. Reshetnyak, Space Mappings with Bounded Distortion, Translations of Mathematical Monographs, 73. American Mathematical Society, Providence, RI, 1989. MR 994644 (90d:30067)
  • 14. S. Rickman, Quasiregular Mappings. Springer-Verlag, 1993. MR 1238941 (95g:30026)
  • 15. J. Sarvas, Symmetrization of condensers in $ n$-space. Ann. Acad. Sci. Fenn. Ser. A I, No. 522 (1972), 1-44. MR 0348108 (50:606)
  • 16. J. Väisälä, Lectures on $ n$-Dimensional Quasiconformal Mappings. Lecture Notes in Math., 229, Springer-Verlag, 1971. MR 0454009 (56:12260)
  • 17. M. Vuorinen, Conformal Geometry and Quasiregular Mappings. Lecture Notes in Math., 1319, Springer-Verlag, 1988. MR 950174 (89k:30021)
  • 18. N. Zorii, Precise estimate of the $ 2$-capacity of a condenser. Ukrainian Math. J. 42 (1990), 224-228. Translated from Ukrain. Mat. Zh. 42 (1990), 253-257. MR 1053428 (91c:31003)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 30C65, 30C80

Retrieve articles in all journals with MSC (2010): 30C65, 30C80


Additional Information

Dimitrios Betsakos
Affiliation: Department of Mathematics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
Email: betsakos@math.auth.gr

DOI: https://doi.org/10.1090/S0002-9939-2010-10604-4
Keywords: Quasiregular mapping, Schwarz’s lemma, capacity, conformal modulus, extremal length, symmetrization, diameter.
Received by editor(s): February 16, 2010
Received by editor(s) in revised form: April 26, 2010
Published electronically: September 15, 2010
Communicated by: Mario Bonk
Article copyright: © Copyright 2010 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society