Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 

 

On fields of definition of torsion points of elliptic curves with complex multiplication


Authors: Luis Dieulefait, Enrique González-Jiménez and Jorge Jiménez Urroz
Journal: Proc. Amer. Math. Soc. 139 (2011), 1961-1969
MSC (2010): Primary 11G05; Secondary 11F80
Published electronically: November 9, 2010
MathSciNet review: 2775372
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For any elliptic curve $ E$ defined over the rationals with complex multiplication (CM) and for every prime $ p$, we describe the image of the mod $ p$ Galois representation attached to $ E$. We deduce information about the field of definition of torsion points of these curves; in particular, we classify all cases where there are torsion points over Galois number fields not containing the field of definition of the CM.


References [Enhancements On Off] (What's this?)

  • 1. J. J. CANNON, W. BOSMA (EDS.), Handbook of Magma Functions, Edition 2.15 (2008).
  • 2. Yasutsugu Fujita, Torsion subgroups of elliptic curves with non-cyclic torsion over ℚ in elementary abelian 2-extensions of ℚ, Acta Arith. 115 (2004), no. 1, 29–45. MR 2102804, 10.4064/aa115-1-3
  • 3. Soonhak Kwon, Torsion subgroups of elliptic curves over quadratic extensions, J. Number Theory 62 (1997), no. 1, 144–162. MR 1430007, 10.1006/jnth.1997.2036
  • 4. Derong Qiu and Xianke Zhang, Elliptic curves and their torsion subgroups over number fields of type (2,2,…,2), Sci. China Ser. A 44 (2001), no. 2, 159–167. MR 1824316, 10.1007/BF02874418
  • 5. Jean-Pierre Serre, Propriétés galoisiennes des points d’ordre fini des courbes elliptiques, Invent. Math. 15 (1972), no. 4, 259–331 (French). MR 0387283
  • 6. Joseph H. Silverman, The arithmetic of elliptic curves, Graduate Texts in Mathematics, vol. 106, Springer-Verlag, New York, 1986. MR 817210
  • 7. Joseph H. Silverman, Advanced topics in the arithmetic of elliptic curves, Graduate Texts in Mathematics, vol. 151, Springer-Verlag, New York, 1994. MR 1312368
  • 8. W. STEIN et al., Sage: Open Source Mathematical Software (Version 3.4), The Sage Group, 2009, http://www.sagemath.org.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 11G05, 11F80

Retrieve articles in all journals with MSC (2010): 11G05, 11F80


Additional Information

Luis Dieulefait
Affiliation: Departament d’Algebra i Geometria, Universitat de Barcelona, G. V. de les Corts Catalanes 585, 08007 Barcelona, Spain
Email: ldieulefait@ub.edu

Enrique González-Jiménez
Affiliation: Departamento de Matemáticas, Universidad Autónoma de Madrid and Instituto de Ciencias Matemáticas (CSIC-UAM-UC3M-UCM), 28049 Madrid, Spain
Email: enrique.gonzalez.jimenez@uam.es

Jorge Jiménez Urroz
Affiliation: Departament de Matemàtica Aplicada IV, Universitat Politecnica de Catalunya, 08034 Barcelona, Spain
Email: jjimenez@ma4.upc.edu

DOI: http://dx.doi.org/10.1090/S0002-9939-2010-10621-4
Keywords: Elliptic curves, torsion, Galois representation
Received by editor(s): March 16, 2010
Received by editor(s) in revised form: June 2, 2010
Published electronically: November 9, 2010
Additional Notes: The authors were partially supported by the grants MTM2006-04895 (Ministerio de Educación y Ciencia of Spain), MTM2009-07291 (Ministerio de Ciencia e Innovación of Spain), CCG08-UAM/ESP-3906 (Universidad Autónoma de Madrid and Comunidad de Madrid), and MTM2009-11068 (Ministerio de Ciencia e Innovación of Spain) respectively.
Communicated by: Ken Ono
Article copyright: © Copyright 2010 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.