Weighted estimates for powers of the Ahlfors-Beurling operator

Author:
Oliver Dragičević

Journal:
Proc. Amer. Math. Soc. **139** (2011), 2113-2120

MSC (2010):
Primary 42B20; Secondary 47A10

DOI:
https://doi.org/10.1090/S0002-9939-2010-10645-7

Published electronically:
November 15, 2010

MathSciNet review:
2775389

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that for any , and any weight from the Muckenhoupt class, the norm of the -th power of the Ahlfors-Beurling operator on the weighted Lebesgue space is majorized by , where is the characteristic of . We apply this estimate for a result concerning the spectrum of on .

**1.**L. V. Ahlfors:*Lectures on Quasiconformal Mappings*, second edition, University Lecture Series**38**, American Mathematical Society, 2006. MR**2241787 (2009d:30001)****2.**K. Astala:*Area distortion of quasiconformal mappings*, Acta Math.**173**(1994), 37-60. MR**1294669 (95m:30028b)****3.**K. Astala, T. Iwaniec, G. Martin:*Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane*, Princeton Mathematical Series**48**, Princeton University Press, 2009. MR**2472875****4.**K. Astala, T. Iwaniec, E. Saksman:*Beltrami operators in the plane*, Duke Math. J.**107**(2001), no. 1, 27-56. MR**1815249 (2001m:30021)****5.**R. Bañuelos, P. Janakiraman:*-bounds for the Beurling-Ahlfors transform*, Trans. Amer. Math. Soc.**360**(2008), 3603-3612. MR**2386238 (2009d:42032)****6.**O. Dragičević:*Some remarks on the estimates for powers of the Ahlfors-Beurling operator*, submitted.**7.**O. Dragičević, L. Grafakos, M. C. Pereyra, S. Petermichl:*Extrapolation and sharp norm estimates for classical operators on weighted Lebesgue spaces*, Publ. Mat.**49**(2005), no. 1, 73-91. MR**2140200 (2006d:42019)****8.**O. Dragičević, S. Petermichl, A. Volberg:*A rotation method which gives linear estimates for powers of the Ahlfors-Beurling operator*, J. Math. Pures Appl.**86**(2006), 492-509. MR**2281449 (2007k:30074)****9.**O. Dragičević, A. Volberg:*Sharp estimate of the Ahlfors-Beurling operator via averaging martingale transforms*, Michigan Math. J.**51**(2003), no. 2, 415-435. MR**1992955 (2004c:42030)****10.**T. Iwaniec:*Extremal inequalities in Sobolev spaces and quasiconformal mappings*, Z. Anal. Anwend.**1**(1982), 1-16. MR**719167 (85g:30027)****11.**T. Iwaniec, G. Martin:*Riesz transforms and related singular integrals*, J. Reine Angew. Math.**473**(1996), 25-57. MR**1390681 (97k:42033)****12.**S. Petermichl, A. Volberg:*Heating of the Ahlfors-Beurling operator: weakly quasiregular maps on the plane are quasiregular*, Duke Math. J.**112**(2002), no. 2, 281-305. MR**1894362 (2003d:42025)****13.**J. Wittwer:*A sharp estimate on the norm of the martingale transform*, Math. Res. Lett.**7**(2000), no. 1, 1-12. MR**1748283 (2001e:42022)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2010):
42B20,
47A10

Retrieve articles in all journals with MSC (2010): 42B20, 47A10

Additional Information

**Oliver Dragičević**

Affiliation:
Faculty of Mathematics and Physics and Institute of Mathematics, Physics and Mechanics, University of Ljubljana, Jadranska 19, SI-1000 Ljubljana, Slovenia

Email:
oliver.dragicevic@fmf.uni-lj.si

DOI:
https://doi.org/10.1090/S0002-9939-2010-10645-7

Received by editor(s):
February 10, 2010

Received by editor(s) in revised form:
June 5, 2010

Published electronically:
November 15, 2010

Additional Notes:
This work was partially supported by the Ministry of Higher Education, Science and Technology of Slovenia (research program Analysis and Geometry, contract no. P1-0291).

Communicated by:
Franc Forstneric

Article copyright:
© Copyright 2010
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.