Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On multiple Appell polynomials


Author: D. W. Lee
Journal: Proc. Amer. Math. Soc. 139 (2011), 2133-2141
MSC (2000): Primary 33C45, 42C05
DOI: https://doi.org/10.1090/S0002-9939-2010-10648-2
Published electronically: November 24, 2010
MathSciNet review: 2775391
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we first define the multiple Appell polynomials and find several equivalent conditions for this class of polynomials. Then we give a characterization theorem that if multiple Appell polynomials are also multiple orthogonal, then they are the multiple Hermite polynomials.


References [Enhancements On Off] (What's this?)

  • 1. W. A. Al-Salam, Characterization theorems for orthogonal polynomials, Orthogonal Polynomials, in P. Nevai (Editor), Theory and Practice Proc. Nato ASI (Columbus, Ohio), Series C: Math. Phys. Sci., vol. 294, Kluwer Acad. Publ., 1990, 1-24. MR 1100286 (92g:42011)
  • 2. A. Angelesco, Sur l'approximation simultanée de plusieurs intégrales définies, CRAS, 167 (1918), 629-631.
  • 3. P. Appell, Sur une classe de polynômes, Annales scientifiques de l'École Normale Supérieure $ 2^e$ série, tome 9, 1880.
  • 4. A. I. Aptekarev, Multiple orthogonal polynomials, J. Comput. Appl. Math., 99 (1998), 423-447. MR 1662713 (99m:42036)
  • 5. A. I. Aptekarev, A. Branquinho, and W. Van Assche, Multiple orthogonal polynomials for classical weights, Trans. Amer. Math. Soc., 355 (2003), 3887-3914. MR 1990569 (2004g:33014)
  • 6. J. Arvesú, J. Coussement, and W. Van Assche, Some discrete multiple orthogonal polynomials, J. Comput. Appl. Math., 153 (2003), 19-45. MR 1985676 (2004g:33015)
  • 7. B. Beckermann, J. Coussement, and W. Van Assche, Multiple Wilson and Jacobi-Piñeiro polynomials, J. Approx. Theory, 132 (2005), 155-181. MR 2118514 (2005m:42034)
  • 8. Y. Ben Cheikh and K. Douak, A generalized hypergeometric $ d$-orthogonal polynomial set, C. R. Acad. Sci. Paris Ser. I Math., 331 (2000), 349-354. MR 1784912 (2003a:33025)
  • 9. Y. Ben Cheikh, I. Lamiri, and A. Ouni, On Askey-scheme and $ d$-orthogonality, I: A characterization theorem, J. Comput. Appl. Math., 233 (2009), 621-629. MR 2582995
  • 10. L. Carlitz, Characterization of certain sequences of orthogonal polynomials, Portugaliae Math., 20 (1961), 43-46. MR 0130405 (24:A266)
  • 11. E. Coussement, J. Coussement, and W. Van Assche, Asymptotic zero distribution for a class of multiple orthogonal polynomials, Trans. Amer. Math. Soc., 360 (2008), 5571-5588. MR 2415086 (2009e:33021)
  • 12. T. S. Chihara, An Introduction to Orthogonal Polynomials, Gordon and Breach, 1978. MR 0481884 (58:1979)
  • 13. J. Coussement and W. Van Assche, Differential equations for multiple orthogonal polynomials with respect to classical weights, J. Phys. A, Math. Gen., 39 (2006), 3311-3318. MR 2214212 (2007a:33007)
  • 14. J. Coussement and W. Van Assche, Gauss quadrature for multiple orthogonal polynomials, J. Comput. Appl. Math., 178 (2005), 131-145. MR 2127875 (2006f:33005)
  • 15. K. Douak, The relation of the $ d$-orthogonal polynomials to the Appell polynomials, J. Comput. Appl. Math., 70 (1996), 279-295. MR 1399874 (97k:33007)
  • 16. W. Hahn, Über Orthogonalpolynome, die q-Differenzengleichungen genügen, Math. Nach., 2 (1949), 4-34. MR 0030647 (11:29b)
  • 17. M. E. H. Ismail, Classical and quantum orthogonal polynomials in one variable, with two chapters by Walter Van Assche. With a foreword by Richard A. Askey. Encyclopedia of Mathematics and its Applications, 98, Cambridge University Press, Cambridge, 2005. MR 2191786 (2007f:33001)
  • 18. D. W. Lee, Properties of multiple Hermite and multiple Laguerre polynomials by the generating function, Integral Trans. Spec. Func., 18 (2007), 855-869. MR 2374587 (2009c:33025)
  • 19. J. Minguez Ceniceros and W. Van Assche, Multiple orthogonal polynomials on the unit circle, Constr. Approx., 28 (2008), 173-197. MR 2358391 (2008i:42054)
  • 20. J. Meixner, Orthogonale Polynomsysteme mit einer besonderen Gestalt der erzeugenden Funktionen, J. London Math. Soc., 9 (1934), 6-13.
  • 21. E. M. Nikishin and V. N. Sorokin, Rational Approximations and Orthogonality, Translations of Mathematical Monographs, vol. 92, Amer. Math. Soc., Providence, RI, 1991. MR 1130396 (92i:30037)
  • 22. K. Postelmans and W. Van Assche, Multiple little $ q$-Jacobi polynomials, J. Comput. Appl. Math., 178 (2005), 361-375. MR 2127891 (2006c:33015)
  • 23. J. Shohat, The relation of the classical orthogonal polynomials to the polynomials of Appell, Amer. J. Math., 58 (1936), 453-464. MR 1507168
  • 24. G. Szegö, Orthogonal Polynomials, Amer. Math. Soc. Coll. Publ., vol. 23, 4th ed., Amer. Math. Soc., Providence, RI, 1975. MR 0372517 (51:8724)
  • 25. L. Toscano, Polinomi ortogonali o reciproci di ortogonali nella classe di Appell, Le Matematica, 11 (1956), 168-174. MR 0102617 (21:1407)
  • 26. W. Van Assche and E. Coussement, Some classical multiple orthogonal polynomials, J. Comput. Appl. Math., 127 (2001), 317-347. MR 1808581 (2001i:33012)
  • 27. M. Webster, Orthogonal polynomials with orthogonal derivatives, Bull. Amer. Math. Soc., 44 (1938), 880-888. MR 1563895
  • 28. A. Zaghouani, Some basic $ d$-orthogonal polynomial sets, Georgian Math. J., 12 (2005), 583-593. MR 2174960 (2006e:42040)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 33C45, 42C05

Retrieve articles in all journals with MSC (2000): 33C45, 42C05


Additional Information

D. W. Lee
Affiliation: Department of Mathematics, Teachers College, Kyungpook National University, Daegu 702-701, South Korea
Email: dongwon@mail.knu.ac.kr

DOI: https://doi.org/10.1090/S0002-9939-2010-10648-2
Received by editor(s): December 21, 2009
Received by editor(s) in revised form: May 31, 2010, and June 11, 2010
Published electronically: November 24, 2010
Communicated by: Walter Van Assche
Article copyright: © Copyright 2010 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society