Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Almost quarter-pinched Kähler metrics and Chern numbers


Authors: Martin Deraux and Harish Seshadri
Journal: Proc. Amer. Math. Soc. 139 (2011), 2571-2576
MSC (2010): Primary 53C21; Secondary 53C20
DOI: https://doi.org/10.1090/S0002-9939-2010-10676-7
Published electronically: December 9, 2010
MathSciNet review: 2784826
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Given $ n \in {\mathbb{Z}}^+$ and $ \varepsilon >0$, we prove that there exists $ \delta = \delta (\varepsilon,n) >0$ such that the following holds: If $ (M^n,g)$ is a compact Kähler $ n$-manifold whose sectional curvatures $ K$ satisfy

$\displaystyle -1 - \delta \le K \le - \frac {1}{4}$

and $ c_I(M)$, $ c_J(M)$ are any two Chern numbers of $ M$, then

$\displaystyle \Bigl \vert \frac {c_I(M)}{c_J(M)} - \frac {c_I^0}{c_J^0} \Bigr \vert < \varepsilon,$

where $ c_I^0$, $ c_J^0$ are the corresponding characteristic numbers of a complex hyperbolic space form.

It follows that the Mostow-Siu surfaces and the threefolds of Deraux do not admit Kähler metrics with pinching close to $ \frac {1}{4}$.


References [Enhancements On Off] (What's this?)

  • 1. M. Berger, Sur quelques variétés Riemanniennes suffisamment pincées, Bull. Soc. Math. France 88 (1960), 57-71. MR 0133781 (24:A3606)
  • 2. M. Deraux, A negatively curved Kähler threefold not covered by the ball, Invent. Math. 160 (2005), 501-525. MR 2178701 (2006j:32021)
  • 3. M. Gromov, W. P. Thurston, Pinching constants for hyperbolic manifolds, Invent. Math. 89 (1987), 1-12. MR 892185 (88e:53058)
  • 4. L. Hernandez, Kähler manifolds and $ \frac{1}{4}$-pinching, Duke Math. J. 62 (1991) 601-611. MR 1104810 (92b:53046)
  • 5. S. Kobayashi, S. I. Goldberg, Holomorphic bisectional curvature, J. Diff. Geom. 1 (1967), 225-233. MR 0227901 (37:3485)
  • 6. S. Mendonca, D. Zhou, Expression of curvature tensors and some applications, Bol. Soc. Bras. Mat. 32 (2001), no. 2, 173-184. MR 1860868 (2002g:53048)
  • 7. G. D. Mostow, Y. T. Siu, A compact Kähler surface of negative curvature not covered by the ball, Ann. Math 112 (1980), 321-360. MR 592294 (82f:53075)
  • 8. P. Pansu, Pincement des variétés à courbure négative d'après M. Gromov et W. Thurston, Séminaire de Théorie Spectrale et Géométrie, no. 4 (1985-1986), 101-113. MR 1046064 (91a:53067)
  • 9. S. T. Yau, F. Zheng, Negatively $ \frac{1}{4}$-pinched Riemannian metric on a compact Kähler manifold, Invent. Math. 103 (1991), 527-535. MR 1091617 (92a:53056)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 53C21, 53C20

Retrieve articles in all journals with MSC (2010): 53C21, 53C20


Additional Information

Martin Deraux
Affiliation: Institut Fourier, Université de Grenoble I, 38402 Saint-Martin-d’Hères Cedex, France
Email: deraux@ujf-grenoble.fr

Harish Seshadri
Affiliation: Department of Mathematics, Indian Institute of Science, Bangalore 560012, India
Email: harish@math.iisc.ernet.in

DOI: https://doi.org/10.1090/S0002-9939-2010-10676-7
Received by editor(s): December 18, 2009
Received by editor(s) in revised form: June 28, 2010
Published electronically: December 9, 2010
Communicated by: Richard A. Wentworth
Article copyright: © Copyright 2010 American Mathematical Society

American Mathematical Society