Spinor sheaves on singular quadrics

Author:
Nicolas Addington

Journal:
Proc. Amer. Math. Soc. **139** (2011), 3867-3879

MSC (2010):
Primary 14J70, 14J60, 14J17, 15A66; Secondary 13D02

DOI:
https://doi.org/10.1090/S0002-9939-2011-10819-0

Published electronically:
March 21, 2011

MathSciNet review:
2823033

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We define, using matrix factorizations of the equation of , reflexive sheaves on a singular quadric that generalize the spinor bundles on smooth quadrics. We study the first properties of these spinor sheaves, give a Horrocks-type criterion, and show that they are semi-stable, and indeed stable in some cases.

**1.**N. Addington,*The derived category of the intersection of four quadrics*, preprint, http://arxiv.org/abs/0904.1764arXiv:0904.1764.**2.**E. Ballico,*Splitting criteria for vector bundles on singular quadrics*, Int. J. Contemp. Math. Sciences**2**(2007), no. 31, 1549-1551. MR**2378570****3.**A. A. Beĭlinson,*Coherent sheaves on and problems in linear algebra*, Funct. Anal. Appl.**12**(1978), no. 3, 214-216. MR**509388 (80c:14010b)****4.**J. Bertin,*Clifford algebras and matrix factorizations*, Adv. Appl. Clifford Algebr.**18**(2008), no. 3-4, 417-430. MR**2490565 (2010h:15039)****5.**R.-O. Buchweitz, D. Eisenbud, and J. Herzog,*Cohen-Macaulay modules on quadrics*, Singularities, representation of algebras, and vector bundles (Lambrecht, 1985), Lecture Notes in Math., vol. 1273, Springer, Berlin, 1987, pp. 58-116. MR**915169 (89g:13005)****6.**D. Huybrechts and M. Lehn,*The geometry of moduli spaces of sheaves*, Aspects in Mathematics, vol. E31, Vieweg, 1997. MR**1450870 (98g:14012)****7.**M. M. Kapranov,*The derived category of coherent sheaves on the square*(English), Funct. Anal. Appl.**20**(1986), no. 2, 141-142. MR**847146 (88a:14014)****8.**A. Kapustin and Y. Li,*D-branes in Landau-Ginzburg models and algebraic geometry*, J. High Energy Phys.**2003**(2003), no. 12, 005, 44 pp. (electronic). MR**2041170 (2005b:81179b)****9.**A. Kuznetsov,*Derived categories of quadric fibrations and intersections of quadrics*, Adv. Math.**218**(2008), 1340-1369. MR**2419925 (2009g:14019)****10.**A. Langer,*D-affinity and Frobenius morphism on quadrics*, Int. Math. Res. Not. IMRN**2008**(2008), no. 1, rnm145, 26 pp. MR**2417792 (2009d:14014)****11.**H. B. Lawson and M. L. Michelsohn,*Spin geometry*, Princeton Mathematical Series, no. 38, Princeton University Press, Princeton, NJ, 1989. MR**1031992 (91g:53001)****12.**G. Ottaviani,*Spinor bundles on quadrics*, Trans. Amer. Math. Soc.**307**(1988), no. 1, 301-316. MR**936818 (89h:14012)****13.**-,*Some extensions of Horrocks criterion to vector bundles on Grassmannians and quadrics*, Annali Mat. Pura Appl. (IV)**155**(1989), no. 1, 317-341. MR**1042842 (91f:14018)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2010):
14J70,
14J60,
14J17,
15A66,
13D02

Retrieve articles in all journals with MSC (2010): 14J70, 14J60, 14J17, 15A66, 13D02

Additional Information

**Nicolas Addington**

Affiliation:
Department of Mathematics, Imperial College London, London SW7 2AZ, United Kingdom

Email:
n.addington@imperial.ac.uk

DOI:
https://doi.org/10.1090/S0002-9939-2011-10819-0

Received by editor(s):
June 8, 2010

Received by editor(s) in revised form:
September 29, 2010

Published electronically:
March 21, 2011

Additional Notes:
This work was supported in part by the National Science Foundation under grants no. DMS-0354112, DMS-0556042, and DMS-0838210.

Communicated by:
Lev Borisov

Article copyright:
© Copyright 2011
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.