Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Invertible linear maps on simple Lie algebras preserving commutativity


Authors: Dengyin Wang and Zhengxin Chen
Journal: Proc. Amer. Math. Soc. 139 (2011), 3881-3893
MSC (2010): Primary 17B20, 17B40
DOI: https://doi.org/10.1090/S0002-9939-2011-10834-7
Published electronically: April 7, 2011
MathSciNet review: 2823034
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \mathfrak{g}$ be a finite-dimensional simple Lie algebra of rank $ l$ over an algebraically closed field of characteristic zero. An invertible linear map $ \varphi$ on $ \mathfrak{g}$ is called preserving commutativity in both directions if, for any $ x, y\in \mathfrak{g}$, $ [x,y]=0$ $ \Leftrightarrow$ $ [\varphi(x),\varphi(y)]=0$. The group of all such maps on $ \mathfrak{g}$ is denoted by $ Pzp (\mathfrak{g})$. It is shown in this paper that, if $ l=1$, then $ Pzp(\mathfrak{g})=GL(\mathfrak{g})$; otherwise, $ Pzp(\mathfrak{g})=Aut (\mathfrak{g})\times F^*I_{\mathfrak{g}}$, where $ F^*I_{\mathfrak{g}}$ denotes the group of all non-zero scalar multiplication maps on $ \mathfrak{g}$.


References [Enhancements On Off] (What's this?)

  • 1. M. Brešar, Commuting traces of biadditive mappings, commutativity preserving mappings, and Lie mappings, Trans. Amer. Math. Soc., 335(1993) 525-546. MR 1069746 (93d:16044)
  • 2. Y. Cao, Z. Chen, C. Huang, Commutativity preserving linear maps and Lie automorphisms of strictly triangular matrix space, Lin. Alg. Appl., 350(2002) 41-66. MR 1906746 (2003c:15002)
  • 3. R. W. Carter, Simple Groups of Lie Type, Wiley Interscience, New York, 1972. MR 0407163 (53:10946)
  • 4. J. E. Humphreys, Introduction to Lie algebras and representation theory, Springer, 1972. MR 0323842 (48:2197)
  • 5. N. Jacobson, Lie Algebras, Interscience Publishers, New York-London, 1962. MR 0143793 (26:1345)
  • 6. L. W. Marcoux, A. R. Sourour, Commutativity preserving linear maps and Lie automorphisms of triangular matrix algebras, Lin. Alg. Appl., 288(1999) 89-104. MR 1670535 (99k:16072)
  • 7. M. Omladič, On operators preserving commutativity, J. Funct. Anal., 66(1986) 105-122. MR 829380 (87k:47080)
  • 8. P. Šemrl, Non-linear commutativity preserving maps, Acta Sci. Math. (Szeged), 71(2005) 781-819. MR 2206609 (2006j:47060)
  • 9. W. Watkins, Linear maps that preserve commuting pairs of matrices, Lin. Alg. Appl., 14(1976) 29-35. MR 0480574 (58:732)
  • 10. W. J. Wong, Maps on simple algebras preserving zero products, II: Lie algebras of linear type, Pacific J. Math., 92(1981) 469-488. MR 618078 (82k:15002b)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 17B20, 17B40

Retrieve articles in all journals with MSC (2010): 17B20, 17B40


Additional Information

Dengyin Wang
Affiliation: Department of Mathematics, China University of Mining and Technology, Xuzhou 221008, People’s Republic of China
Email: wdengyin@126.com

Zhengxin Chen
Affiliation: School of Mathematics and Computer Science, Fujian Normal University, Fuzhou, 350007, People’s Republic of China

DOI: https://doi.org/10.1090/S0002-9939-2011-10834-7
Keywords: Simple Lie algebras, maps preserving commutativity, automorphisms of Lie algebras
Received by editor(s): March 7, 2010
Received by editor(s) in revised form: October 1, 2010
Published electronically: April 7, 2011
Communicated by: Gail R. Letzter
Article copyright: © Copyright 2011 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society