Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Implications of the Hasse principle for zero cycles of degree one on principal homogeneous spaces

Author: Jodi Black
Journal: Proc. Amer. Math. Soc. 139 (2011), 4163-4171
MSC (2010): Primary 11E72; Secondary 11E57
Published electronically: April 12, 2011
MathSciNet review: 2823061
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ k$ be a perfect field of virtual cohomological dimension $ \leq 2$. Let $ G$ be a connected linear algebraic group over $ k$ such that $ G^{sc}$ satisfies a Hasse principle over $ k$. Let $ X$ be a principal homogeneous space under $ G$ over $ k$. We show that if $ X$ admits a zero cycle of degree one, then $ X$ has a $ k$-rational point.

References [Enhancements On Off] (What's this?)

  • 1. E. Bayer-Fluckiger and R. Parimala, Classical groups and the Hasse principle, Ann. of Math. (2) 147 (1998), no. 3, 651-693. MR 1637659 (99g:11055)
  • 2. M. Borovoi, J.-L. Colliot-Thélène, and A. N. Skorobogatov, The elementary obstruction and homogeneous spaces, Duke Math. J. 141 (2008), no. 2, 321-364. MR 2376817 (2009f:14040)
  • 3. V. I. Chernousov, The Hasse principle for groups of type $ E_8$, Dokl. Akad. Nauk SSSR 306 (1989), no. 5, 1059-1063. MR 1014762 (90m:11055)
  • 4. Günter Harder, Über die Galoiskohomologie halbeinfacher Matrizengruppen. II, Math. Z. 92 (1966), 396-415. MR 0202918 (34:2777)
  • 5. Martin Kneser, Hasse principle for $ H^{1}$ of simply connected groups, Proc. Sympos. Pure Math., Amer. Math. Soc., 1965, pp. 159-163. MR 0220736 (36:3788)
  • 6. Max-Albert Knus, Alexander Merkurjev, Markus Rost, and Jean-Pierre Tignol, The book of involutions, American Mathematical Society Colloquium Publications, vol. 44, American Mathematical Society, Providence, RI, 1998, with a preface in French by J. Tits. MR 1632779 (2000a:16031)
  • 7. A. S. Merkurev, The norm principle for algebraic groups, Algebra i Analiz 7 (1995), no. 2, 77-105. MR 1347513 (96k:20088)
  • 8. J.-J. Sansuc, Groupe de Brauer et arithmétique des groupes algébriques linéaires sur un corps de nombres, J. Reine Angew. Math. 327 (1981), 12-80. MR 631309 (83d:12010)
  • 9. Winfried Scharlau, Quadratic and Hermitian forms, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 270, Springer-Verlag, Berlin, 1985. MR 770063 (86k:11022)
  • 10. Jean-Pierre Serre, Galois cohomology, English ed., Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2002, translated from the French by Patrick Ion and revised by the author. MR 1867431 (2002i:12004)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 11E72, 11E57

Retrieve articles in all journals with MSC (2010): 11E72, 11E57

Additional Information

Jodi Black
Affiliation: Department of Mathematics and Computer Science, Emory University, Atlanta, Georgia 30322

Received by editor(s): October 7, 2010
Published electronically: April 12, 2011
Additional Notes: The results in this work are from a doctoral dissertation in progress under the direction of R. Parimala, whom the author sincerely thanks for her guidance
Communicated by: Ken Ono
Article copyright: © Copyright 2011 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society